Irregularity of Distribution in Wasserstein Distance

被引:8
|
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] On Properties of the Generalized Wasserstein Distance
    Benedetto Piccoli
    Francesco Rossi
    Archive for Rational Mechanics and Analysis, 2016, 222 : 1339 - 1365
  • [22] Active Distribution Network Expansion Planning Based on Wasserstein Distance and Dual Relaxation
    Liu, Jianchu
    Weng, Xinghang
    Bao, Mingyang
    Lu, Shaohan
    He, Changhao
    ENERGIES, 2024, 17 (12)
  • [23] Bounding Wasserstein Distance with Couplings
    Biswas, Niloy
    Mackey, Lester
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2947 - 2958
  • [24] On parameter estimation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 657 - 676
  • [25] Identification of Biomedical Blood Cell Irregularity Distribution Based on Cumulative Matching Distance
    Liu, J.
    Han, J.
    Lv, H.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT SCIENCE (ITMS 2015), 2015, 34 : 1043 - 1046
  • [26] Parameterised Distance to Local Irregularity
    Fioravantes, Foivos
    Melissinos, Nikolaos
    Triommatis, Theofilos
    Leibniz International Proceedings in Informatics, LIPIcs, 321
  • [27] Parameterised distance to local irregularity
    Fioravantes, Foivos
    Melissinos, Nikolaos
    Triommatis, Theofilos
    arXiv, 2023,
  • [28] Distributionally Robust Optimal Reactive Power Dispatch with Wasserstein Distance in Active Distribution Network
    Jun Liu
    Yefu Chen
    Chao Duan
    Jiang Lin
    Jia Lyu
    JournalofModernPowerSystemsandCleanEnergy, 2020, 8 (03) : 426 - 436
  • [29] Distributionally Robust Optimal Reactive Power Dispatch with Wasserstein Distance in Active Distribution Network
    Liu J.
    Chen Y.
    Duan C.
    Lin J.
    Lyu J.
    Journal of Modern Power Systems and Clean Energy, 2020, 8 (03): : 426 - 436
  • [30] Characterization of probability distribution convergence in Wasserstein distance by LP-quantization error function
    Liu, Yating
    Pages, Gilles
    BERNOULLI, 2020, 26 (02) : 1171 - 1204