Irregularity of Distribution in Wasserstein Distance

被引:8
|
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Distributionally Robust Optimal Reactive Power Dispatch with Wasserstein Distance in Active Distribution Network
    Liu, Jun
    Chen, Yefu
    Duan, Chao
    Lin, Jiang
    Lyu, Jia
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2020, 8 (03) : 426 - 436
  • [32] SULCAL PATTERN MATCHING WITH THE WASSERSTEIN DISTANCE
    Chen, Zijian
    Das, Soumya
    Chung, Moo K.
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [33] Shape Analysis with Hyperbolic Wasserstein Distance
    Shi, Jie
    Zhang, Wen
    Wang, Yalin
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5051 - 5061
  • [34] Hyperbolic Wasserstein Distance for Shape Indexing
    Shi, Jie
    Wang, Yalin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1362 - 1376
  • [35] Differentially Private Sliced Wasserstein Distance
    Rakotomamonjy, Alain
    Ralaivola, Liva
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [36] Wasserstein distance, Fourier series and applications
    Steinerberger, Stefan
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 305 - 338
  • [37] ESTIMATING PROCESSES IN ADAPTED WASSERSTEIN DISTANCE
    Backhoff, Julio
    Bartl, Daniel
    Beiglbock, Mathias
    Wiesel, Johannes
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 529 - 550
  • [38] Wasserstein distance, Fourier series and applications
    Stefan Steinerberger
    Monatshefte für Mathematik, 2021, 194 : 305 - 338
  • [39] Explainable AI Using the Wasserstein Distance
    Chaudhury, Shion Samadder
    Sadhukhan, Payel
    Sengupta, Kausik
    IEEE ACCESS, 2024, 12 : 18087 - 18102
  • [40] On the Wasserstein distance and the Dobrushin uniqueness theorem
    Dorlas, T. C.
    Savoie, B.
    REVIEWS IN MATHEMATICAL PHYSICS, 2025,