Extremes of Gaussian processes, on results of Piterbarg and Seleznjev

被引:12
|
作者
Hüsler, J [1 ]
机构
[1] Univ Bern, Inst Stat Math, CH-3012 Bern, Switzerland
关键词
Gaussian processes; maxima; extreme values; exceedances; Poisson point process; Berman's condition;
D O I
10.1016/S0167-7152(99)00016-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a particular sequence of Gaussian processes we consider the maximum M-n(T) up to time T and its limiting behaviour as T = T(n) and n converges to oo. This sequence occurs in the approximation of the path of the continuous Gaussian process by broken lines. This limiting behaviour was analyzed by Piterbarg and Seleznjev assuming certain conditions. We improve their result assuming a weaker long-range dependence condition. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [1] Extremes of independent Gaussian processes
    Zakhar Kabluchko
    Extremes, 2011, 14 : 285 - 310
  • [2] Extremes of multidimensional Gaussian processes
    Debicki, K.
    Kosinski, K. M.
    Mandjes, M.
    Rolski, T.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (12) : 2289 - 2301
  • [3] Extremes of independent Gaussian processes
    Kabluchko, Zakhar
    EXTREMES, 2011, 14 (03) : 285 - 310
  • [4] SOJOURNS AND EXTREMES OF GAUSSIAN PROCESSES
    BERMAN, SM
    ANNALS OF PROBABILITY, 1974, 2 (06): : 999 - 1026
  • [5] PICKANDS-PITERBARG CONSTANTS FOR SELF-SIMILAR GAUSSIAN PROCESSES
    Debicki, Krzysztof
    Tabis, Kamil
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2020, 40 (02): : 297 - 315
  • [6] On Piterbarg Max-Discretisation Theorem for Standardised Maximum of Stationary Gaussian Processes
    Zhongquan Tan
    Enkelejd Hashorva
    Methodology and Computing in Applied Probability, 2014, 16 : 169 - 185
  • [7] On Piterbarg Max-Discretisation Theorem for Standardised Maximum of Stationary Gaussian Processes
    Tan, Zhongquan
    Hashorva, Enkelejd
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (01) : 169 - 185
  • [8] Extremes of Gaussian chaos processes with trend
    Bai, Long
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) : 1358 - 1376
  • [9] Large extremes of Gaussian chaos processes
    Piterbarg, V. I.
    DOKLADY MATHEMATICS, 2016, 93 (02) : 145 - 147
  • [10] Large extremes of Gaussian chaos processes
    V. I. Piterbarg
    Doklady Mathematics, 2016, 93 : 145 - 147