Extremes of Gaussian processes, on results of Piterbarg and Seleznjev

被引:12
|
作者
Hüsler, J [1 ]
机构
[1] Univ Bern, Inst Stat Math, CH-3012 Bern, Switzerland
关键词
Gaussian processes; maxima; extreme values; exceedances; Poisson point process; Berman's condition;
D O I
10.1016/S0167-7152(99)00016-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a particular sequence of Gaussian processes we consider the maximum M-n(T) up to time T and its limiting behaviour as T = T(n) and n converges to oo. This sequence occurs in the approximation of the path of the continuous Gaussian process by broken lines. This limiting behaviour was analyzed by Piterbarg and Seleznjev assuming certain conditions. We improve their result assuming a weaker long-range dependence condition. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [11] Extremes of Gaussian Processes with Random Variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Zhang, Yueming
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1254 - 1280
  • [12] Extremes of a certain class of Gaussian processes
    Hüsler, J
    Piterbarg, V
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (02) : 257 - 271
  • [13] On Piterbarg's max-discretisation theorem for multivariate stationary Gaussian processes
    Tan, Zhongquan
    Hashorva, Enkelejd
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 299 - 314
  • [14] Extremes of reflecting Gaussian processes on discrete grid
    Debicki, Krzysztof
    Jasnovidov, Grigori
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)
  • [15] Extremes of Gaussian processes with a smooth random variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Rumyantseva, Ekaterina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2592 - 2605
  • [16] Extremes of Gaussian processes over an infinite horizon
    Dieker, AB
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (02) : 207 - 248
  • [17] Discrete and continuous time extremes of Gaussian processes
    Piterbarg V.I.
    Extremes, 2004, 7 (2) : 161 - 177
  • [18] EXTREMES OF γ-REFLECTED GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Liu, Peng
    ESAIM-PROBABILITY AND STATISTICS, 2018, 21 : 495 - 535
  • [19] EXTREMES OF ORDER STATISTICS OF STATIONARY GAUSSIAN PROCESSES
    Zhao, Chunming
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2018, 38 (01): : 61 - 75
  • [20] EXTREMES OF GAUSSIAN PROCESSES WITH BIMODAL SPECTRA.
    Toro, Gabriel R.
    Cornell, C.Allin
    Journal of Engineering Mechanics, 1986, 112 (05): : 465 - 484