Extremes of Gaussian chaos processes with trend

被引:1
|
作者
Bai, Long [1 ,2 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou 215123, Peoples R China
[2] Univ Lausanne, Dept Actuarial Sci, UNIL Dorigny, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Gaussian chaos; Gaussian vector processes; Asymptotic methods; Pickands constant; PROBABILITY; CONSTANTS;
D O I
10.1016/j.jmaa.2019.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(t) (X-1 (t), ..., X-d(t)), t is an element of [0, S] be a Gaussian vector process and let g(x), x is an element of R-d be a continuous homogeneous function. We are concerned with the exact tail asymptotic of the chaos process g(X(t)), t is an element of [0, S] with a trend function h(t). Both scenarios X(t) is locally-stationary and X(t) is non-stationary are considered. Important examples include the product of Gaussian processes and chi-processes. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1358 / 1376
页数:19
相关论文
共 50 条
  • [1] Large extremes of Gaussian chaos processes
    Piterbarg, V. I.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (02) : 145 - 147
  • [2] Large extremes of Gaussian chaos processes
    V. I. Piterbarg
    [J]. Doklady Mathematics, 2016, 93 : 145 - 147
  • [3] Extremes of Gaussian Processes with a Smooth Random Trend
    Piterbarg, Vladimir
    Popivoda, Goran
    Stamatovic, Sinisa
    [J]. FILOMAT, 2017, 31 (08) : 2267 - 2279
  • [4] Extremes of vector-valued Gaussian processes with Trend
    Bai, Long
    Debicki, Krzysztof
    Liu, Peng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (01) : 47 - 74
  • [5] HIGH EXTREMES OF GAUSSIAN CHAOS PROCESSES: A DISCRETE TIME APPROXIMATION APPROACH
    Zhdanov, A., I
    Piterbarg, V., I
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 63 (01) : 1 - 21
  • [6] Extremes of Lp-norm of vector-valued Gaussian processes with trend
    Bai, Long
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (08) : 1111 - 1144
  • [7] Extremes of independent Gaussian processes
    Zakhar Kabluchko
    [J]. Extremes, 2011, 14 : 285 - 310
  • [8] Extremes of multidimensional Gaussian processes
    Debicki, K.
    Kosinski, K. M.
    Mandjes, M.
    Rolski, T.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (12) : 2289 - 2301
  • [9] Extremes of independent Gaussian processes
    Kabluchko, Zakhar
    [J]. EXTREMES, 2011, 14 (03) : 285 - 310
  • [10] SOJOURNS AND EXTREMES OF GAUSSIAN PROCESSES
    BERMAN, SM
    [J]. ANNALS OF PROBABILITY, 1974, 2 (06): : 999 - 1026