Extremes of Gaussian chaos processes with trend

被引:1
|
作者
Bai, Long [1 ,2 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Math Sci, Suzhou 215123, Peoples R China
[2] Univ Lausanne, Dept Actuarial Sci, UNIL Dorigny, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Gaussian chaos; Gaussian vector processes; Asymptotic methods; Pickands constant; PROBABILITY; CONSTANTS;
D O I
10.1016/j.jmaa.2019.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(t) (X-1 (t), ..., X-d(t)), t is an element of [0, S] be a Gaussian vector process and let g(x), x is an element of R-d be a continuous homogeneous function. We are concerned with the exact tail asymptotic of the chaos process g(X(t)), t is an element of [0, S] with a trend function h(t). Both scenarios X(t) is locally-stationary and X(t) is non-stationary are considered. Important examples include the product of Gaussian processes and chi-processes. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1358 / 1376
页数:19
相关论文
共 50 条
  • [31] High extrema of Gaussian chaos processes
    Piterbarg, Vladimir I.
    [J]. EXTREMES, 2016, 19 (02) : 253 - 272
  • [32] Sojourn Times of Gaussian Processes with Trend
    Debicki, Krzysztof
    Liu, Peng
    Michna, Zbigniew
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) : 2119 - 2166
  • [33] Sojourn Times of Gaussian Processes with Trend
    Krzysztof Dȩbicki
    Peng Liu
    Zbigniew Michna
    [J]. Journal of Theoretical Probability, 2020, 33 : 2119 - 2166
  • [34] Extremes of Gaussian and non-Gaussian vector processes: a geometric approach
    Leira, BJ
    [J]. STRUCTURAL SAFETY, 2003, 25 (04) : 401 - 422
  • [35] Finite dimensional models for extremes of Gaussian and non-Gaussian processes
    Xu, Hui
    Grigoriu, Mircea D.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2022, 68
  • [36] Extremes of the time-average of stationary Gaussian processes
    Debicki, Krzysztof
    Tabis, Kamil
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (09) : 2049 - 2063
  • [37] On clusters of high extremes of Gaussian stationary processes with ε-separation
    Huesler, Juerg
    Ladneva, Anna
    Piterbarg, Vladimir
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1825 - 1862
  • [38] On the probability of simultaneous extremes of two Gaussian nonstationary processes
    Anshin, A. B.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2006, 50 (03) : 353 - 366
  • [39] Estimating extremes of combined two Gaussian and non-Gaussian response processes
    Gong, K.
    Chen, X. Z.
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2014, 14 (03)
  • [40] Extreme values of a portfolio of Gaussian processes and a trend
    Hüsler J.
    Schmid C.M.
    [J]. Extremes, 2005, 8 (3) : 171 - 189