Extreme values of a portfolio of Gaussian processes and a trend

被引:0
|
作者
Hüsler J. [1 ]
Schmid C.M. [1 ]
机构
[1] Institut für Mathematische Statistik und Versicherungslehre, Universität Bern, 3012 Bern
关键词
Extreme values; Gaussian processes; Large deviations; Portfolio of assets; Ruin probability; Tail behavior;
D O I
10.1007/s10687-006-7966-9
中图分类号
学科分类号
摘要
We consider the extreme values of a portfolio of independent continuous Gaussian processes ∑i=1k wiXi(t) (wi∈ ℝ, k ∈ ℕ) which are asymptotically locally stationary, with expectations E[Xi(t)] = 0 and variances Var[X i(t)] = dit2Hi (di ∈ ℝ+, 0 < Hi < 1), and a trend -ct β for some constants β, c > 0 with β > H i. We derive the probability P{supt>0 ∑i=1k wiXi(t) - ctβ > u} for u → ∞, which may be interpreted as ruin probability. © Springer Science + Business Media, LLC 2006.
引用
收藏
页码:171 / 189
页数:18
相关论文
共 50 条