Extremes of multidimensional Gaussian processes

被引:25
|
作者
Debicki, K. [2 ]
Kosinski, K. M. [1 ,3 ]
Mandjes, M. [1 ,3 ,4 ]
Rolski, T. [2 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
[3] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1012 WX Amsterdam, Netherlands
[4] CWI, NL-1009 AB Amsterdam, Netherlands
关键词
Gaussian process; Logarithmic asymptotics; Extremes; ASYMPTOTICS;
D O I
10.1016/j.spa.2010.08.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers extreme values attained by a cemered, multidimensional Gaussian process X(t) = (X-1(t), ... , X-n (t)) minus drift d(t) = (d(1) (t), ... , d(n) (t)), on an arbitrary set T. Under mild regularity conditions, we establish the asymptotics of log P (there exists t is an element of T : boolean AND(n)(i=1) {x(i) (t) - d(i) (t), q(i)u}), for positive thresholds q(i) > 0, i = l, ... , n and u -> infinity. Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases A number of examples illustrate the theory. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2289 / 2301
页数:13
相关论文
共 50 条
  • [1] Extremes of independent Gaussian processes
    Zakhar Kabluchko
    [J]. Extremes, 2011, 14 : 285 - 310
  • [2] Extremes of independent Gaussian processes
    Kabluchko, Zakhar
    [J]. EXTREMES, 2011, 14 (03) : 285 - 310
  • [3] SOJOURNS AND EXTREMES OF GAUSSIAN PROCESSES
    BERMAN, SM
    [J]. ANNALS OF PROBABILITY, 1974, 2 (06): : 999 - 1026
  • [4] EXTREMES OF MULTIDIMENSIONAL STATIONARY GAUSSIAN RANDOM FIELDS
    Soja-Kukiela, Natalia
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2018, 38 (01): : 191 - 207
  • [5] Extremes of Gaussian chaos processes with trend
    Bai, Long
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) : 1358 - 1376
  • [6] Large extremes of Gaussian chaos processes
    Piterbarg, V. I.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (02) : 145 - 147
  • [7] Large extremes of Gaussian chaos processes
    V. I. Piterbarg
    [J]. Doklady Mathematics, 2016, 93 : 145 - 147
  • [8] Extremes of Gaussian Processes with Random Variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Zhang, Yueming
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1254 - 1280
  • [9] Extremes of a certain class of Gaussian processes
    Hüsler, J
    Piterbarg, V
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (02) : 257 - 271
  • [10] Sampling of multidimensional Gaussian processes
    Kazakov, VA
    [J]. MSMW'04: FIFTH INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER, AND SUBMILLIMETER WAVES, SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2004, : 256 - 258