Extremes of multidimensional Gaussian processes

被引:25
|
作者
Debicki, K. [2 ]
Kosinski, K. M. [1 ,3 ]
Mandjes, M. [1 ,3 ,4 ]
Rolski, T. [2 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
[3] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1012 WX Amsterdam, Netherlands
[4] CWI, NL-1009 AB Amsterdam, Netherlands
关键词
Gaussian process; Logarithmic asymptotics; Extremes; ASYMPTOTICS;
D O I
10.1016/j.spa.2010.08.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers extreme values attained by a cemered, multidimensional Gaussian process X(t) = (X-1(t), ... , X-n (t)) minus drift d(t) = (d(1) (t), ... , d(n) (t)), on an arbitrary set T. Under mild regularity conditions, we establish the asymptotics of log P (there exists t is an element of T : boolean AND(n)(i=1) {x(i) (t) - d(i) (t), q(i)u}), for positive thresholds q(i) > 0, i = l, ... , n and u -> infinity. Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases A number of examples illustrate the theory. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2289 / 2301
页数:13
相关论文
共 50 条