Efficient Rotation Invariant Gabor Descriptors for Texture Classification

被引:0
|
作者
Rahman, M. Hafizur [1 ]
Pickering, Mark [1 ]
Kundu, Diponkar [2 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
[2] Pabna Sci & Technol, Dept Elect & Elect Engn, Pabna, Bangladesh
关键词
texture classification; Gabor filters; DT-CWT; Brodatz; rotation in variance; sotred distribution; RETRIEVAL; FEATURES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In texture classification experiments, the conventional Gabor representation of textures and its extracted descriptors often yield a poor performance in classifying textures at rotated viewpoints. This paper presents a theoretically very simple, yet efficient approach for generating rotation invariant descriptor representation by sorted distribution of coefficients (SDC) of the Gabor filter outputs smoothed by a Gaussian windowing function. The classification performance is tested on a set of 112 textures from Brodatz album where each texture is rotated in 7 directions. Our implementation exceeds the best reported results and achieves comparable performance on the rest. Our experiments demonstrate that the image representation based on SDC is more effective in classifying textures rotated at different angles.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 50 条
  • [41] COMPARING SIFT DESCRIPTORS AND GABOR TEXTURE FEATURES FOR CLASSIFICATION OF REMOTE SENSED IMAGERY
    Yang, Yi
    Newsam, Shawn
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1852 - 1855
  • [42] Noise robust rotation invariant features for texture classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    [J]. PATTERN RECOGNITION, 2013, 46 (08) : 2103 - 2116
  • [43] Rotation invariant texture classification using multichannel filtering
    Manthalkar, R
    Biswas, PK
    [J]. OBJECT DETECTION, CLASSIFICATION, AND TRACKING TECHNOLOGIES, 2001, 4554 : 107 - +
  • [44] Empirical Mode Decomposition for Rotation Invariant Texture Classification
    Xiong Changzhen
    Guo Fenhong
    [J]. 2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 551 - 554
  • [45] Rotation invariant texture classification of remote sense image
    Lin, Z
    Du, HY
    Liu, YC
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (03) : 189 - 192
  • [46] Reflection and Rotation Invariant Uniform Patterns for Texture Classification
    Liang, Chao
    Yang, Wenming
    Zhou, Fei
    Liao, Qingmin
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (05): : 1400 - 1403
  • [47] TEXTURE CLASSIFICATION USING UNIFORM ROTATION INVARIANT GRADIENT
    Zhao, Wenteng
    Lu, Zongqing
    Liao, Qingmin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3650 - 3654
  • [48] Learning rotation invariant convolutional filters for texture classification
    Marcos, Diego
    Volpi, Michele
    Tuia, Devis
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2012 - 2017
  • [49] Model based rotation-invariant texture classification
    Campisi, P
    Neri, A
    Scarano, G
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 117 - 120
  • [50] Rotation invariant texture classification of remote sense image
    Zhang, Lin
    Du, Hong-Ya
    Liu, Yun-Cai
    [J]. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2004, 23 (03): : 189 - 192