Approximation of quantum control correction scheme using deep neural networks

被引:16
|
作者
Ostaszewski, M. [1 ]
Miszczak, J. A. [1 ]
Banchi, L. [2 ]
Sadowski, P. [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Quantum dynamics; Quantum control; Deep learning; Recurrent neural network; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1007/s11128-019-2240-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the functional relationship between quantum control pulses in the idealized case and the pulses in the presence of an unwanted drift. We show that a class of artificial neural networks called LSTM is able to model this functional relationship with high efficiency, and hence the correction scheme required to counterbalance the effect of the drift. Our solution allows studying the mapping from quantum control pulses to system dynamics and analysing its behaviour with respect to the local variations in the control profile.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Optimal Approximation with Sparsely Connected Deep Neural Networks
    Boelcskei, Helmut
    Grohs, Philipp
    Kutyniok, Gitta
    Petersen, Philipp
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (01): : 8 - 45
  • [32] Optimal deep neural networks by maximization of the approximation power
    Calvo-Pardo, Hector
    Mancini, Tullio
    Olmo, Jose
    COMPUTERS & OPERATIONS RESEARCH, 2023, 156
  • [33] Aberration correction for flow velocity measurements using deep convolutional neural networks
    Gao Z.
    Li X.
    Ye H.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (10):
  • [34] Motion Correction Using Deep Learning Neural Networks - Effects of Data Representation
    Zaydullin, Rifkat
    Bharath, Anil A.
    Grisan, Enrico
    Christensen-Jeffries, Kirsten
    Bai, Wenjia
    Tang, Meng-Xing
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [35] A New Error Correction Technique in Quantum Cryptography using Artificial Neural Networks
    Das, Gobinda
    Kule, Malay
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [36] On the Correction of Anomalous Phase Oscillation in Entanglement Witnesses Using Quantum Neural Networks
    Behrman, Elizabeth C.
    Bonde, Richard E. F.
    Steck, James E.
    Behrman, Joanna F.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (09) : 1696 - 1703
  • [37] Deep quantum neural networks on a superconducting processor
    Xiaoxuan Pan
    Zhide Lu
    Weiting Wang
    Ziyue Hua
    Yifang Xu
    Weikang Li
    Weizhou Cai
    Xuegang Li
    Haiyan Wang
    Yi-Pu Song
    Chang-Ling Zou
    Dong-Ling Deng
    Luyan Sun
    Nature Communications, 14
  • [38] QDNN: deep neural networks with quantum layers
    Chen Zhao
    Xiao-Shan Gao
    Quantum Machine Intelligence, 2021, 3
  • [39] Deep neural networks for quantum circuit mapping
    Giovanni Acampora
    Roberto Schiattarella
    Neural Computing and Applications, 2021, 33 : 13723 - 13743
  • [40] Deep quantum neural networks on a superconducting processor
    Pan, Xiaoxuan
    Lu, Zhide
    Wang, Weiting
    Hua, Ziyue
    Xu, Yifang
    Li, Weikang
    Cai, Weizhou
    Li, Xuegang
    Wang, Haiyan
    Song, Yi-Pu
    Zou, Chang-Ling
    Deng, Dong-Ling
    Sun, Luyan
    NATURE COMMUNICATIONS, 2023, 14 (01)