Approximation of quantum control correction scheme using deep neural networks

被引:16
|
作者
Ostaszewski, M. [1 ]
Miszczak, J. A. [1 ]
Banchi, L. [2 ]
Sadowski, P. [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Quantum dynamics; Quantum control; Deep learning; Recurrent neural network; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1007/s11128-019-2240-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the functional relationship between quantum control pulses in the idealized case and the pulses in the presence of an unwanted drift. We show that a class of artificial neural networks called LSTM is able to model this functional relationship with high efficiency, and hence the correction scheme required to counterbalance the effect of the drift. Our solution allows studying the mapping from quantum control pulses to system dynamics and analysing its behaviour with respect to the local variations in the control profile.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] QDNN: deep neural networks with quantum layers
    Zhao, Chen
    Gao, Xiao-Shan
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [42] Deep neural networks for quantum circuit mapping
    Acampora, Giovanni
    Schiattarella, Roberto
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13723 - 13743
  • [43] Detecting Entanglement With Deep Quantum Neural Networks
    Qiu, Peng-Hui
    Chen, Xiao-Guang
    Shi, Yi-Wei
    IEEE ACCESS, 2019, 7 : 94310 - 94320
  • [44] Heuristic pattern correction scheme using adaptively trained generalized regression neural networks
    Hoya, T
    Chambers, JA
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (01): : 91 - 100
  • [45] Correction to: Robust facial landmark extraction scheme using multiple convolutional neural networks
    Hyungjoon Kim
    Jisoo Park
    HyeonWoo Kim
    Eenjun Hwang
    Seungmin Rho
    Multimedia Tools and Applications, 2019, 78 : 3239 - 3239
  • [46] Quantum-inspired tempering for ground state approximation using artificial neural networks
    Albash, Tameem
    Smith, Conor
    Campbell, Quinn
    Baczewski, Andrew D.
    SCIPOST PHYSICS, 2023, 14 (05):
  • [47] Deep Neural Networks Based Key Concealment Scheme
    Kim, Taehyuk
    Youn, Taek Young
    Choi, Dooho
    IEEE ACCESS, 2020, 8 : 204214 - 204225
  • [48] Attack Detection and Approximation in Nonlinear Networked Control Systems Using Neural Networks
    Niu, Haifeng
    Bhowmick, Chandreyee
    Jagannathan, Sarangapani
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (01) : 235 - 245
  • [49] A sequential learning scheme for function approximation using minimal radial basis function neural networks
    Lu, YW
    Sundararajan, N
    Saratchandran, P
    NEURAL COMPUTATION, 1997, 9 (02) : 461 - 478
  • [50] Quantum topology identification with deep neural networks and quantum walks
    Yurui Ming
    Chin-Teng Lin
    Stephen D. Bartlett
    Wei-Wei Zhang
    npj Computational Materials, 5