Approximation of quantum control correction scheme using deep neural networks

被引:16
|
作者
Ostaszewski, M. [1 ]
Miszczak, J. A. [1 ]
Banchi, L. [2 ]
Sadowski, P. [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Quantum dynamics; Quantum control; Deep learning; Recurrent neural network; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1007/s11128-019-2240-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the functional relationship between quantum control pulses in the idealized case and the pulses in the presence of an unwanted drift. We show that a class of artificial neural networks called LSTM is able to model this functional relationship with high efficiency, and hence the correction scheme required to counterbalance the effect of the drift. Our solution allows studying the mapping from quantum control pulses to system dynamics and analysing its behaviour with respect to the local variations in the control profile.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Training deep quantum neural networks
    Kerstin Beer
    Dmytro Bondarenko
    Terry Farrelly
    Tobias J. Osborne
    Robert Salzmann
    Daniel Scheiermann
    Ramona Wolf
    Nature Communications, 11
  • [22] Training deep quantum neural networks
    Beer, Kerstin
    Bondarenko, Dmytro
    Farrelly, Terry
    Osborne, Tobias J.
    Salzmann, Robert
    Scheiermann, Daniel
    Wolf, Ramona
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [23] VaR Estimation with Quantum Computing Noise Correction Using Neural Networks
    de Pedro, Luis
    Murillo, Rau
    de Vergara, Jorge E. Lopez
    Lopez-Buedo, Sergio
    Gomez-Arribas, Francisco J.
    MATHEMATICS, 2023, 11 (20)
  • [24] Optimal approximation of piecewise smooth functions using deep ReLU neural networks
    Petersen, Philipp
    Voigtlaender, Felix
    NEURAL NETWORKS, 2018, 108 : 296 - 330
  • [25] Approximation of dispatching rules in manufacturing control using artificial neural networks
    Bergmann, Soeren
    Stelzer, Soeren
    2011 IEEE WORKSHOP ON PRINCIPLES OF ADVANCED AND DISTRIBUTED SIMULATION (PADS), 2011,
  • [26] Quantum correction of nanoscale MOSFETs with neural networks
    School of Electrical and Communication Eng., Xi'an Jiaotong University, Xi'an 710049, China
    不详
    Guti Dianzixue Yanjiu Yu Jinzhan, 2006, 3 (285-289):
  • [27] Adaptive Control of Robotic Manipulators using Deep Neural Networks
    Ganie, Irfan
    Jagannathan, S.
    IFAC PAPERSONLINE, 2022, 55 (15): : 148 - 153
  • [28] Universal Approximation Property of Hamiltonian Deep Neural Networks
    Zakwan, Muhammad
    d'Angelo, Massimiliano
    Ferrari-Trecate, Giancarlo
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2689 - 2694
  • [29] The phase diagram of approximation rates for deep neural networks
    Yarotsky, Dmitry
    Zhevnerchuk, Anton
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [30] A Design Framework for Hardware Approximation of Deep Neural Networks
    Lin, Wei-Hung
    Kao, Hsu-Yu
    Huang, Shih-Hsu
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,