Deep quantum neural networks on a superconducting processor

被引:0
|
作者
Xiaoxuan Pan
Zhide Lu
Weiting Wang
Ziyue Hua
Yifang Xu
Weikang Li
Weizhou Cai
Xuegang Li
Haiyan Wang
Yi-Pu Song
Chang-Ling Zou
Dong-Ling Deng
Luyan Sun
机构
[1] Tsinghua University,Center for Quantum Information, Institute for Interdisciplinary Information Sciences
[2] University of Science and Technology of China,CAS Key Laboratory of Quantum Information
[3] Hefei National Laboratory,undefined
[4] Shanghai Qi Zhi Institute,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report an experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. We experimentally perform the forward process of the backpropagation algorithm and classically simulate the backward process. In particular, we show that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to 93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our experimental results indicate that the number of coherent qubits required to maintain does not scale with the depth of the deep quantum neural network, thus providing a valuable guide for quantum machine learning applications with both near-term and future quantum devices.
引用
收藏
相关论文
共 50 条
  • [1] Deep quantum neural networks on a superconducting processor
    Pan, Xiaoxuan
    Lu, Zhide
    Wang, Weiting
    Hua, Ziyue
    Xu, Yifang
    Li, Weikang
    Cai, Weizhou
    Li, Xuegang
    Wang, Haiyan
    Song, Yi-Pu
    Zou, Chang-Ling
    Deng, Dong-Ling
    Sun, Luyan
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases
    Herrmann, Johannes
    Llima, Sergi Masot
    Remm, Ants
    Zapletal, Petr
    McMahon, Nathan A.
    Scarato, Colin
    Swiadek, Francois
    Andersen, Christian Kraglund
    Hellings, Christoph
    Krinner, Sebastian
    Lacroix, Nathan
    Lazar, Stefania
    Kerschbaum, Michael
    Zanuz, Dante Colao
    Norris, Graham J.
    Hartmann, Michael J.
    Wallraff, Andreas
    Eichler, Christopher
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases
    Johannes Herrmann
    Sergi Masot Llima
    Ants Remm
    Petr Zapletal
    Nathan A. McMahon
    Colin Scarato
    François Swiadek
    Christian Kraglund Andersen
    Christoph Hellings
    Sebastian Krinner
    Nathan Lacroix
    Stefania Lazar
    Michael Kerschbaum
    Dante Colao Zanuz
    Graham J. Norris
    Michael J. Hartmann
    Andreas Wallraff
    Christopher Eichler
    [J]. Nature Communications, 13
  • [4] Recent advances of quantum neural networks on the near term quantum processor
    Lü, Yanxuan
    Gao, Qing
    Lü, Jinhu
    Pan, Yu
    Dong, Daoyi
    [J]. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52 (04): : 547 - 564
  • [5] Controlling a superconducting quantum processor
    Katharina Zeissler
    [J]. Nature Electronics, 2023, 6 : 181 - 181
  • [6] A Microarchitecture for a Superconducting Quantum Processor
    Fu, X.
    Rol, M. A.
    Bultink, C. C.
    van Someren, J.
    Khammassi, N.
    Ashraf, I.
    Vermeulen, R. F. L.
    de Sterke, J. C.
    Vlothuizen, W. J.
    Schouten, R. N.
    Almudever, C. G.
    DiCarlo, L.
    Bertels, K.
    [J]. IEEE MICRO, 2018, 38 (03) : 40 - 47
  • [7] Controlling a superconducting quantum processor
    Zeissler, Katharina
    [J]. NATURE ELECTRONICS, 2023, 6 (03) : 181 - 181
  • [8] Training deep quantum neural networks
    Kerstin Beer
    Dmytro Bondarenko
    Terry Farrelly
    Tobias J. Osborne
    Robert Salzmann
    Daniel Scheiermann
    Ramona Wolf
    [J]. Nature Communications, 11
  • [9] Training deep quantum neural networks
    Beer, Kerstin
    Bondarenko, Dmytro
    Farrelly, Terry
    Osborne, Tobias J.
    Salzmann, Robert
    Scheiermann, Daniel
    Wolf, Ramona
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Quantum criticality using a superconducting quantum processor
    Dupont, Maxime
    Moore, Joel E.
    [J]. PHYSICAL REVIEW B, 2022, 106 (04)