Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases

被引:42
|
作者
Herrmann, Johannes [1 ]
Llima, Sergi Masot [1 ]
Remm, Ants [1 ]
Zapletal, Petr [2 ]
McMahon, Nathan A. [2 ]
Scarato, Colin [1 ]
Swiadek, Francois [1 ]
Andersen, Christian Kraglund [1 ]
Hellings, Christoph [1 ]
Krinner, Sebastian [1 ]
Lacroix, Nathan [1 ]
Lazar, Stefania [1 ]
Kerschbaum, Michael [1 ]
Zanuz, Dante Colao [1 ]
Norris, Graham J. [1 ]
Hartmann, Michael J. [2 ]
Wallraff, Andreas [1 ,3 ]
Eichler, Christopher [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Erlangen, Germany
[3] Swiss Fed Inst Technol, Quantum Ctr, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
STATES;
D O I
10.1038/s41467-022-31679-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum neural networks could help analysing the output of quantum computers and quantum simulators of growing complexity. Here, the authors use a 7-qubit superconducting quantum processor to show how a quantum convolutional neural network can correctly recognise the phase of a quantum many-body state. Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases
    Johannes Herrmann
    Sergi Masot Llima
    Ants Remm
    Petr Zapletal
    Nathan A. McMahon
    Colin Scarato
    François Swiadek
    Christian Kraglund Andersen
    Christoph Hellings
    Sebastian Krinner
    Nathan Lacroix
    Stefania Lazar
    Michael Kerschbaum
    Dante Colao Zanuz
    Graham J. Norris
    Michael J. Hartmann
    Andreas Wallraff
    Christopher Eichler
    [J]. Nature Communications, 13
  • [2] Deep quantum neural networks on a superconducting processor
    Xiaoxuan Pan
    Zhide Lu
    Weiting Wang
    Ziyue Hua
    Yifang Xu
    Weikang Li
    Weizhou Cai
    Xuegang Li
    Haiyan Wang
    Yi-Pu Song
    Chang-Ling Zou
    Dong-Ling Deng
    Luyan Sun
    [J]. Nature Communications, 14
  • [3] Deep quantum neural networks on a superconducting processor
    Pan, Xiaoxuan
    Lu, Zhide
    Wang, Weiting
    Hua, Ziyue
    Xu, Yifang
    Li, Weikang
    Cai, Weizhou
    Li, Xuegang
    Wang, Haiyan
    Song, Yi-Pu
    Zou, Chang-Ling
    Deng, Dong-Ling
    Sun, Luyan
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Model-Independent Learning of Quantum Phases of Matter with Quantum Convolutional Neural Networks
    Liu, Yu-Jie
    Smith, Adam
    Knap, Michael
    Pollmann, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (22)
  • [5] Quantum convolutional neural networks
    Cong, Iris
    Choi, Soonwon
    Lukin, Mikhail D.
    [J]. NATURE PHYSICS, 2019, 15 (12) : 1273 - +
  • [6] Quantum convolutional neural networks
    Iris Cong
    Soonwon Choi
    Mikhail D. Lukin
    [J]. Nature Physics, 2019, 15 : 1273 - 1278
  • [7] Hybrid Quantum Convolutional Neural Networks in TensorFlow Quantum
    Khurelsukh, Bishrelt
    [J]. 2022 33RD IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2022,
  • [8] Quantum criticality using a superconducting quantum processor
    Dupont, Maxime
    Moore, Joel E.
    [J]. PHYSICAL REVIEW B, 2022, 106 (04)
  • [9] Predicting quantum advantage by quantum walk with convolutional neural networks
    Melnikov, Alexey A.
    Fedichkin, Leonid E.
    Alodjants, Alexander
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (12) : 1V
  • [10] Quantum Convolution for Convolutional Neural Networks
    Bourahla, Mustapha
    [J]. QUANTUM COMPUTING: APPLICATIONS AND CHALLENGES, QSAC 2023, 2024, 2 : 179 - 193