COLORING GRAPHS WITH TWO ODD CYCLE LENGTHS

被引:0
|
作者
Ma, Jie [1 ]
Ning, Bo [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
chromatic number; odd cycle length; 3-colorability; critical graph;
D O I
10.1137/15M1053773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we determine the chromatic number of graphs with two odd cycle lengths. Let G be a graph and L(G) be the set of all odd cycle lengths of G. We prove that (1) if L(G) = {3, 3 + 2l}, where l >= 2, then chi(G) = max{3, omega(G)}, and (2) if L(G) = {k, k + 2l}, where k >= 5 and l >= 1, then chi(G) = 3. These, together with the case L(G) = {3, 5} solved in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072] give a complete solution to the general problem addressed in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072; S.-M. Camacho and I. Schiermeyer, Discrete Math., 309 (2009), pp. 4916-4919; and T. Kaiser, O .Rucky, and R. Skrekovski, SIAM T. Discrete Math., 25 (2011), pp. 1069-1088]. Our results also improve a classical theorem of Gyarfas which asserts that chi(G) <= 2 vertical bar L(G)vertical bar + 2 for any graph G.
引用
收藏
页码:296 / 319
页数:24
相关论文
共 50 条
  • [31] ON CYCLE LENGTHS IN GRAPHS OF MODERATE DEGREE
    AITDJAFER, HB
    DISCRETE MATHEMATICS, 1994, 125 (1-3) : 55 - 62
  • [32] Online coloring graphs with high girth and high odd girth
    Nagy-Gyorgy, J.
    OPERATIONS RESEARCH LETTERS, 2010, 38 (03) : 185 - 187
  • [33] Note on coloring graphs without odd-Kk-minors
    Kawarabayashi, Ken-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) : 728 - 731
  • [34] Decomposition, Approximation, and Coloring of Odd-Minor-Free Graphs
    Demaine, Erik D.
    Hajiaghayi, MohammadTaghi
    Kawarabayashi, Ken-ichi
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 329 - +
  • [35] Odd facial total-coloring of unicyclic plane graphs
    Czap, Julius
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 56 - 59
  • [36] On the Hamilton-Waterloo problem with odd cycle lengths
    Burgess, A. C.
    Danziger, P.
    Traetta, T.
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (02) : 51 - 83
  • [37] Irregular coloring of Join of two graphs and Platonic graphs
    Shyama, S.
    Iyer, Radha R.
    2022 2nd International Conference on Computer Science, Engineering and Applications, ICCSEA 2022, 2022,
  • [38] Two coloring problems on matrix graphs
    Han, Zhe
    Lu, Mei
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)
  • [39] Acyclic edge coloring of planar graphs without cycles of specific lengths
    Gao Y.
    Yu D.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 533 - 540
  • [40] On two coloring problems in mixed graphs
    Ries, B.
    de Werra, D.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) : 712 - 725