COLORING GRAPHS WITH TWO ODD CYCLE LENGTHS

被引:0
|
作者
Ma, Jie [1 ]
Ning, Bo [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
chromatic number; odd cycle length; 3-colorability; critical graph;
D O I
10.1137/15M1053773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we determine the chromatic number of graphs with two odd cycle lengths. Let G be a graph and L(G) be the set of all odd cycle lengths of G. We prove that (1) if L(G) = {3, 3 + 2l}, where l >= 2, then chi(G) = max{3, omega(G)}, and (2) if L(G) = {k, k + 2l}, where k >= 5 and l >= 1, then chi(G) = 3. These, together with the case L(G) = {3, 5} solved in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072] give a complete solution to the general problem addressed in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072; S.-M. Camacho and I. Schiermeyer, Discrete Math., 309 (2009), pp. 4916-4919; and T. Kaiser, O .Rucky, and R. Skrekovski, SIAM T. Discrete Math., 25 (2011), pp. 1069-1088]. Our results also improve a classical theorem of Gyarfas which asserts that chi(G) <= 2 vertical bar L(G)vertical bar + 2 for any graph G.
引用
收藏
页码:296 / 319
页数:24
相关论文
共 50 条
  • [41] List coloring and diagonal coloring for plane graphs of diameter two
    Huang, Danjun
    Wang, Yiqiao
    Lv, Jing
    Yang, Yanping
    Wang, Weifan
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [42] n-Tuple Coloring of Planar Graphs with Large Odd Girth
    William Klostermeyer
    Cun Quan Zhang
    Graphs and Combinatorics, 2002, 18 : 119 - 132
  • [43] ON THE SUM OF THE RECIPROCALS OF CYCLE LENGTHS IN SPARSE GRAPHS
    GYARFAS, A
    PROMEL, HJ
    SZEMEREDI, E
    VOIGT, B
    COMBINATORICA, 1985, 5 (01) : 41 - 52
  • [44] A Unified Proof of Conjectures on Cycle Lengths in Graphs
    Gao, Jun
    Huo, Qingyi
    Liu, Chun-Hung
    Ma, Jie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7615 - 7653
  • [45] Odd facial total-coloring of maximal plane and outerplane graphs
    Czap, Julius
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 20 - 24
  • [46] Cycle lengths in graphs with large minimum degree
    Nikiforov, V
    Schelp, RH
    JOURNAL OF GRAPH THEORY, 2006, 52 (02) : 157 - 170
  • [47] On the size of graphs without repeated cycle lengths
    Lai, Chunhui
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 226 - 229
  • [48] Note on graphs without repeated cycle lengths
    Chen, GT
    Lehel, J
    Jacobson, MS
    Shreve, WE
    JOURNAL OF GRAPH THEORY, 1998, 29 (01) : 11 - 15
  • [49] Degree sums for edges and cycle lengths in graphs
    Brandt, S
    Veldman, HJ
    JOURNAL OF GRAPH THEORY, 1997, 25 (04) : 253 - 256
  • [50] n-Tuple coloring of planar graphs with large odd girth
    Klostermeyer, W
    Zhang, CQ
    GRAPHS AND COMBINATORICS, 2002, 18 (01) : 119 - 132