COLORING GRAPHS WITH TWO ODD CYCLE LENGTHS

被引:0
|
作者
Ma, Jie [1 ]
Ning, Bo [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
chromatic number; odd cycle length; 3-colorability; critical graph;
D O I
10.1137/15M1053773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we determine the chromatic number of graphs with two odd cycle lengths. Let G be a graph and L(G) be the set of all odd cycle lengths of G. We prove that (1) if L(G) = {3, 3 + 2l}, where l >= 2, then chi(G) = max{3, omega(G)}, and (2) if L(G) = {k, k + 2l}, where k >= 5 and l >= 1, then chi(G) = 3. These, together with the case L(G) = {3, 5} solved in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072] give a complete solution to the general problem addressed in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072; S.-M. Camacho and I. Schiermeyer, Discrete Math., 309 (2009), pp. 4916-4919; and T. Kaiser, O .Rucky, and R. Skrekovski, SIAM T. Discrete Math., 25 (2011), pp. 1069-1088]. Our results also improve a classical theorem of Gyarfas which asserts that chi(G) <= 2 vertical bar L(G)vertical bar + 2 for any graph G.
引用
收藏
页码:296 / 319
页数:24
相关论文
共 50 条
  • [21] Improper odd coloring of IC-planar graphs
    Chen, Ping
    Zhang, Xin
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 74 - 80
  • [22] Structure and coloring of graphs with only small odd cycles
    Wang, Susan S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) : 1040 - 1072
  • [23] b-coloring of Cartesian product of odd graphs
    Balakrishnan, R.
    Raj, S. Francis
    Kavaskar, T.
    ARS COMBINATORIA, 2017, 131 : 285 - 298
  • [24] Cycle lengths in randomly perturbed graphs
    Aigner-Horev, Elad
    Hefetz, Dan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 867 - 884
  • [25] CYCLE LENGTHS AND CIRCUIT MATROIDS OF GRAPHS
    WOODALL, DR
    DISCRETE MATHEMATICS, 1992, 105 (1-3) : 269 - 273
  • [26] Cycle lengths and minimum degree of graphs
    Liu, Chun-Hung
    Ma, Jie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 128 : 66 - 95
  • [27] Cycle lengths and chromatic number of graphs
    Mihók, P
    Schiermeyer, I
    DISCRETE MATHEMATICS, 2004, 286 (1-2) : 147 - 149
  • [28] On arithmetic progressions of cycle lengths in graphs
    Verstraëte, J
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (04): : 369 - 373
  • [29] EXISTENCE OF GRAPHS WITH SPECIFIED CYCLE LENGTHS
    MCCUAIG, W
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 127 - 133
  • [30] Cycle lengths in sparse random graphs
    Alon, Yahav
    Krivelevich, Michael
    Lubetzky, Eyal
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 444 - 461