Acyclic edge coloring of planar graphs without cycles of specific lengths

被引:0
|
作者
Gao Y. [1 ]
Yu D. [2 ]
机构
[1] School of Mathematics and Computer Science, Ningxia University
[2] Department of Computer Science, University of Hong Kong, Hong Kong, Pokfulam Road
基金
中国国家自然科学基金;
关键词
Acyclic edge coloring; Combinatorial problems; Forbidden cycles; Planar graphs;
D O I
10.1007/s12190-010-0448-x
中图分类号
学科分类号
摘要
A proper edge coloring of a graph G is called acyclic edge coloring if there are no bicolored cycles in G. Let Δ(G) denote the maximum degree of G. In this paper, we prove that every planar graph with Δ(G)≥10 and without cycles of lengths 4 to 11 is acyclic (Δ(G)+1)-edge colorable, and every planar graph with Δ(G)≥11 and without cycles of lengths 4 to 9 is acyclic (Δ(G)+1)-edge colorable. © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:533 / 540
页数:7
相关论文
共 50 条
  • [1] Acyclic Edge Coloring of Planar Graphs Without Small Cycles
    Jianfeng Hou
    Guizhen Liu
    Jianliang Wu
    [J]. Graphs and Combinatorics, 2012, 28 : 215 - 226
  • [2] Acyclic edge coloring of planar graphs without adjacent cycles
    Min Wan
    BaoGang Xu
    [J]. Science China Mathematics, 2014, 57 : 433 - 442
  • [3] Acyclic edge coloring of planar graphs without adjacent cycles
    WAN Min
    XU BaoGang
    [J]. Science China Mathematics, 2014, 57 (02) : 433 - 442
  • [4] Acyclic Edge Coloring of Planar Graphs Without Small Cycles
    Hou, Jianfeng
    Liu, Guizhen
    Wu, Jianliang
    [J]. GRAPHS AND COMBINATORICS, 2012, 28 (02) : 215 - 226
  • [5] Acyclic edge coloring of planar graphs without adjacent cycles
    Wan Min
    Xu BaoGang
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) : 433 - 442
  • [6] Acyclic edge coloring of planar graphs without 4-cycles
    Wang, Weifan
    Shu, Qiaojun
    Wang, Yiqiao
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 562 - 586
  • [7] Acyclic edge coloring of planar graphs without 4-cycles
    Weifan Wang
    Qiaojun Shu
    Yiqiao Wang
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 562 - 586
  • [8] Acyclic edge coloring of planar graphs without 5-cycles
    Shu, Qiaojun
    Wang, Weifan
    Wang, Yiqiao
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1211 - 1223
  • [9] Acyclic Edge Coloring of 1-planar Graphs without 4-cycles
    Wei-fan WANG
    Yi-qiao WANG
    Wan-shun YANG
    [J]. Acta Mathematicae Applicatae Sinica, 2024, 40 (01) : 35 - 44
  • [10] Acyclic Edge Coloring of 1-planar Graphs without 4-cycles
    Wang, Wei-fan
    Wang, Yi-qiao
    Yang, Wan-shun
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01): : 35 - 44