COLORING GRAPHS WITH TWO ODD CYCLE LENGTHS

被引:0
|
作者
Ma, Jie [1 ]
Ning, Bo [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
chromatic number; odd cycle length; 3-colorability; critical graph;
D O I
10.1137/15M1053773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we determine the chromatic number of graphs with two odd cycle lengths. Let G be a graph and L(G) be the set of all odd cycle lengths of G. We prove that (1) if L(G) = {3, 3 + 2l}, where l >= 2, then chi(G) = max{3, omega(G)}, and (2) if L(G) = {k, k + 2l}, where k >= 5 and l >= 1, then chi(G) = 3. These, together with the case L(G) = {3, 5} solved in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072] give a complete solution to the general problem addressed in [S.-S. Wang, SIAM T. Discrete Math., 22 (2008), pp. 1040-1072; S.-M. Camacho and I. Schiermeyer, Discrete Math., 309 (2009), pp. 4916-4919; and T. Kaiser, O .Rucky, and R. Skrekovski, SIAM T. Discrete Math., 25 (2011), pp. 1069-1088]. Our results also improve a classical theorem of Gyarfas which asserts that chi(G) <= 2 vertical bar L(G)vertical bar + 2 for any graph G.
引用
收藏
页码:296 / 319
页数:24
相关论文
共 50 条
  • [1] Colourings of graphs with two consecutive odd cycle lengths
    Camacho, Stephan Matos
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2009, 309 (15) : 4916 - 4919
  • [2] GRAPHS WITH K-ODD CYCLE LENGTHS
    GYARFAS, A
    DISCRETE MATHEMATICS, 1992, 103 (01) : 41 - 48
  • [3] Odd edge coloring of graphs
    Luzar, Borut
    Petrusevski, Mirko
    Skrekovski, Riste
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) : 277 - 287
  • [4] Odd coloring of sparse graphs and planar graphs
    Cho, Eun-Kyung
    Choi, Ilkyoo
    Kwon, Hyemin
    Park, Boram
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [5] GRAPHS WITH ODD CYCLE LENGTHS 5 AND 7 ARE 3-COLORABLE
    Kaiser, Tomas
    Rucky, Ondrej
    Skrekovski, Riste
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (03) : 1069 - 1088
  • [6] On odd-graceful coloring of graphs
    Suparta, I. Nengah
    Lin, Yuqing
    Hasni, Roslan
    Budayana, I. Nyoman
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [7] Coloring graphs with few odd cycles
    Stong, R
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (04): : 372 - 372
  • [8] Coloring graphs with no odd-K4
    Zang, WN
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 205 - 212
  • [9] Coloring graphs with no odd-K4
    Discrete Math, 1-3 (205-212):
  • [10] Odd 4-Coloring of Outerplanar Graphs
    Masaki Kashima
    Xuding Zhu
    Graphs and Combinatorics, 2024, 40 (6)