Odd edge coloring of graphs

被引:0
|
作者
Luzar, Borut [1 ,2 ]
Petrusevski, Mirko [3 ]
Skrekovski, Riste [1 ,2 ,4 ]
机构
[1] Fac Informat Studies, Novo Mesto 8000, Slovenia
[2] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[3] Fac Mech Engn, Dept Math & Informat, Skopje, Macedonia
[4] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Edge coloring; odd subgraph; Shannon triangle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge coloring of a graph G is said to be an odd edge coloring if for each vertex v of G and each color c, the vertex v uses the color c an odd number of times or does not use it at all. In [5], Pyber proved that 4 colors suffice for an odd edge coloring of any simple graph. Recently, some results on this type of colorings of (multi) graphs were successfully applied in solving a problem of facial parity edge coloring [3, 2]. In this paper we present additional results, namely we prove that 6 colors suffice for an odd edge coloring of any loopless connected (multi) graph, provide examples showing that this upper bound is sharp and characterize the family of loopless connected (multi) graphs for which the bound 6 is achieved. We also pose several open problems.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 50 条
  • [1] Odd coloring of sparse graphs and planar graphs
    Cho, Eun-Kyung
    Choi, Ilkyoo
    Kwon, Hyemin
    Park, Boram
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [2] On odd-graceful coloring of graphs
    Suparta, I. Nengah
    Lin, Yuqing
    Hasni, Roslan
    Budayana, I. Nyoman
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [3] Coloring graphs with few odd cycles
    Stong, R
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (04): : 372 - 372
  • [4] Injective Edge Coloring of Graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Dominic, Charles
    Cruz, J. Pedro
    FILOMAT, 2019, 33 (19) : 6411 - 6423
  • [5] Edge coloring signed graphs
    Behr, Richard
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [6] The Dominator Edge Coloring of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Semistrong edge coloring of graphs
    Gyárfás, A
    Hubenko, A
    JOURNAL OF GRAPH THEORY, 2005, 49 (01) : 39 - 47
  • [8] Edge coloring of signed graphs
    Zhang, Li
    Lu, You
    Luo, Rong
    Ye, Dong
    Zhang, Shenggui
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 234 - 242
  • [9] Local edge coloring of graphs
    Deepa, P.
    Srinivasan, P.
    Sundarakannan, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (01) : 29 - 32
  • [10] On the simultaneous edge coloring of graphs
    Bagheri, Behrooz Gh
    Omoomi, Behnaz
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (04)