Local edge coloring of graphs

被引:0
|
作者
Deepa, P. [1 ]
Srinivasan, P. [2 ]
Sundarakannan, M. [3 ]
机构
[1] Madras Christian Coll, Dept Math SFS, Chennai, Tamil Nadu, India
[2] Amer Coll, Dept Math, Madurai, Tamil Nadu, India
[3] Sri Sivasubramaniya Nadar Coll Engn, Dept Math, Chennai 603110, Tamil Nadu, India
关键词
Coloring; edge coloring; local coloring; line graph;
D O I
10.1080/09728600.2021.1915722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A local edge coloring of G is a proper edge coloring c:E -> N such that for each subset S of E(G) with 2 <= vertical bar S vertical bar <= 3, there exist edges e,f is an element of S such that vertical bar c(e)-c(f)vertical bar >= n(s), where n(s) is the number of copies of P-3 in the edge induced subgraph S. The maximum color assigned by a local edge coloring c to an edge of G is called the value of c and is denoted by chi(l)'(c). The local edge chromatic number of G is chi(l)'(G)=min{chi(l)'(c)}, where the minimum is taken over all local edge colorings c of G. In this article, we derive bounds and many results based on local edge coloring.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
  • [1] On (a, d)-edge local antimagic coloring number of graphs
    Sundaramoorthy, Rajkumar
    Moviri Chettiar, Nalliah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1994 - 2002
  • [2] Local conditions for planar graphs of acyclic edge coloring
    Zhang, Wenwen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 721 - 738
  • [3] Local Edge Antimagic Coloring of Comb Product of Graphs
    Agustin, Ika Hesti
    Hasan, Moh.
    Dafik
    Alfarisi, Ridho
    Kristiana, A. I.
    Prihandini, R. M.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [4] Local conditions for planar graphs of acyclic edge coloring
    Wenwen Zhang
    Journal of Applied Mathematics and Computing, 2022, 68 : 721 - 738
  • [5] Injective Edge Coloring of Graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Dominic, Charles
    Cruz, J. Pedro
    FILOMAT, 2019, 33 (19) : 6411 - 6423
  • [6] Edge coloring signed graphs
    Behr, Richard
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [7] The Dominator Edge Coloring of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [8] Semistrong edge coloring of graphs
    Gyárfás, A
    Hubenko, A
    JOURNAL OF GRAPH THEORY, 2005, 49 (01) : 39 - 47
  • [9] Edge coloring of signed graphs
    Zhang, Li
    Lu, You
    Luo, Rong
    Ye, Dong
    Zhang, Shenggui
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 234 - 242
  • [10] On the simultaneous edge coloring of graphs
    Bagheri, Behrooz Gh
    Omoomi, Behnaz
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (04)