A Sharp Sobolev Interpolation Inequality on Finsler Manifolds

被引:4
|
作者
Kristaly, Alexandru [1 ,2 ,3 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
[3] Budapest Tech Polytech Inst, H-1034 Budapest, Hungary
关键词
Sobolev interpolation inequality; Sharp constant; Finsler manifold; Minkowski space; Ricci curvature; Rigidity; RIEMANNIAN-MANIFOLDS; HARDY;
D O I
10.1007/s12220-014-9510-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a sharp Sobolev interpolation inequality on Finsler manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler-Laplace operator and on the Finslerian Bishop-Gromov volume comparison theorem.
引用
收藏
页码:2226 / 2240
页数:15
相关论文
共 50 条
  • [41] A sharp Hardy–Sobolev inequality with boundary term and applications
    Jonison L. Carvalho
    Marcelo F. Furtado
    Everaldo S. Medeiros
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [42] Interpolation along manifolds in Hardy-Sobolev spaces
    Journal of Geometric Analysis, 7 (01): : 17 - 45
  • [43] Towards a Fully Nonlinear Sharp Sobolev Trace Inequality
    Case, Jeffrey S.
    Wang, Yi
    JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (04): : 402 - 435
  • [44] On the sharp Hardy inequality in Sobolev-Slobodeckii spaces
    Bianchi, Francesca
    Brasco, Lorenzo
    Zagati, Anna Chiara
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 493 - 555
  • [45] The sharp quantitative Sobolev inequality for functions of bounded variation
    Fusco, N.
    Maggi, F.
    Pratelli, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 315 - 341
  • [46] Harnack Inequality and the Relevant Theorems on Finsler Metric Measure Manifolds
    Cheng, Xinyue
    Feng, Yalu
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [47] A Nakano type inequality for mixed forms on complex Finsler manifolds
    Ida, Cristian
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 471 - 479
  • [48] On the Sobolev-Poincare Inequality of CR-manifolds
    Wang, Yi
    Yang, Paul
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (18) : 5661 - 5678
  • [49] On complete manifolds supporting a weighted Sobolev type inequality
    Adriano, Levi
    Xia, Changyu
    CHAOS SOLITONS & FRACTALS, 2011, 44 (11) : 940 - 946
  • [50] Connecting Poincaré Inequality with Sobolev Inequalities on Riemannian Manifolds
    Wei, Shihshu Walter
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 290 - 305