A Sharp Sobolev Interpolation Inequality on Finsler Manifolds

被引:4
|
作者
Kristaly, Alexandru [1 ,2 ,3 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
[3] Budapest Tech Polytech Inst, H-1034 Budapest, Hungary
关键词
Sobolev interpolation inequality; Sharp constant; Finsler manifold; Minkowski space; Ricci curvature; Rigidity; RIEMANNIAN-MANIFOLDS; HARDY;
D O I
10.1007/s12220-014-9510-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a sharp Sobolev interpolation inequality on Finsler manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler-Laplace operator and on the Finslerian Bishop-Gromov volume comparison theorem.
引用
收藏
页码:2226 / 2240
页数:15
相关论文
共 50 条
  • [21] Sobolev interpolation inequalities on Hadamard manifolds
    Farkas, Csaba
    Kristaly, Alexandru
    Szakal, Aniko
    2016 IEEE 11TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2016, : 161 - 165
  • [22] Sharp Morrey-Sobolev inequalities and eigenvalue problems on Riemannian-Finsler manifolds with nonnegative Ricci curvature
    Kristaly, Alexandru
    Mester, Agnes
    Mezei, Ildiko I.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (10)
  • [23] The sharp Sobolev inequality in quantitative form
    Cianchi, A.
    Fusco, N.
    Maggi, F.
    Pratelli, A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (05) : 1105 - 1139
  • [24] SHARP CONSTANT IN A SOBOLEV TRACE INEQUALITY
    ESCOBAR, JF
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (03) : 687 - 698
  • [25] Sharp conditions for weighted Sobolev interpolation inequalities
    Chua, SK
    FORUM MATHEMATICUM, 2005, 17 (03) : 461 - 478
  • [26] A sharp lower bound for the first eigenvalue on Finsler manifolds
    Wang, Guofang
    Xia, Chao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06): : 983 - 996
  • [27] Homogeneous sharp Sobolev inequalities on product manifolds
    Ceccon, J
    Montenegro, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 277 - 300
  • [28] The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces
    Howard, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) : 2779 - 2787
  • [29] On the Sharp Stability of Critical Points of the Sobolev Inequality
    Alessio Figalli
    Federico Glaudo
    Archive for Rational Mechanics and Analysis, 2020, 237 : 201 - 258
  • [30] THE SHARP SOBOLEV TRACE INEQUALITY IN A LIMITING CASE
    Park, Young Ja
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 629 - 633