A Sharp Sobolev Interpolation Inequality on Finsler Manifolds

被引:4
|
作者
Kristaly, Alexandru [1 ,2 ,3 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
[3] Budapest Tech Polytech Inst, H-1034 Budapest, Hungary
关键词
Sobolev interpolation inequality; Sharp constant; Finsler manifold; Minkowski space; Ricci curvature; Rigidity; RIEMANNIAN-MANIFOLDS; HARDY;
D O I
10.1007/s12220-014-9510-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a sharp Sobolev interpolation inequality on Finsler manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler-Laplace operator and on the Finslerian Bishop-Gromov volume comparison theorem.
引用
收藏
页码:2226 / 2240
页数:15
相关论文
共 50 条
  • [31] On the Sharp Stability of Critical Points of the Sobolev Inequality
    Figalli, Alessio
    Glaudo, Federico
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (01) : 201 - 258
  • [32] The Sobolev inequality for Paneitz operator on three manifolds
    Hang, FB
    Yang, PC
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (01) : 57 - 83
  • [33] SOME REMARKS ON THE SOBOLEV INEQUALITY IN RIEMANNIAN MANIFOLDS
    Andreucci, Daniele
    Tedeev, Anatoli F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1657 - 1667
  • [34] The Sobolev inequality for Paneitz operator on three manifolds
    Fengbo Hang
    Paul C. Yang
    Calculus of Variations and Partial Differential Equations, 2004, 21 : 57 - 83
  • [35] Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries
    Li, YY
    Zhu, MJ
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1997, 50 (05) : 449 - 487
  • [36] Sharp Sobolev inequality involving a critical nonlinearity on a boundary
    Chabrowski, J
    Yang, JF
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (01) : 135 - 153
  • [37] Sharp reversed Hardy–Littlewood–Sobolev inequality on Rn
    Quốc Anh Ngô
    Van Hoang Nguyen
    Israel Journal of Mathematics, 2017, 220 : 189 - 223
  • [38] Interpolation along manifolds in Hardy-Sobolev spaces
    J. Bruna
    J. M. Ortega
    The Journal of Geometric Analysis, 1997, 7 (1): : 17 - 45
  • [39] The sharp convex mixed Lorentz-Sobolev inequality
    Fang, Niufa
    Xu, Wenxue
    Zhou, Jiazu
    Zhu, Baocheng
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [40] Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality
    Rupert L. Frank
    Elliott H. Lieb
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 85 - 99