PeakVI: A deep generative model for single-cell chromatin accessibility analysis

被引:17
|
作者
Ashuach, Tal [1 ]
Reidenbach, Daniel A. [2 ]
Gayoso, Adam [1 ]
Yosef, Nir [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Ragon Inst MGH MIT & Harvard, Cambridge, MA 02139 USA
[4] Chan Zuckerberg BioHub, San Francisco, CA 94158 USA
来源
CELL REPORTS METHODS | 2022年 / 2卷 / 03期
关键词
deep learning; single-cell ATAC-seq; single-cell chromatin accessibility; single-cell genomics;
D O I
10.1016/j.crmeth.2022.100182
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of sparsity, and scale of the generated data make its analysis challenging. Here, we present PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch effects and accounting for technical effects, such as library size and region-specific biases. In addition, PeakVI provides a technique for identifying differential accessibility at a single-region resolution, which can be used for cell-type annotation as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] APEC: an accesson-based method for single-cell chromatin accessibility analysis
    Li, Bin
    Li, Young
    Li, Kun
    Zhu, Lianbang
    Yu, Qiaoni
    Cai, Pengfei
    Fang, Jingwen
    Zhang, Wen
    Du, Pengcheng
    Jiang, Chen
    Lin, Jun
    Qu, Kun
    GENOME BIOLOGY, 2020, 21 (01)
  • [22] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [23] Deep generative modeling for single-cell transcriptomics
    Romain Lopez
    Jeffrey Regier
    Michael B. Cole
    Michael I. Jordan
    Nir Yosef
    Nature Methods, 2018, 15 : 1053 - 1058
  • [24] Deep generative models in single-cell omics
    Rivero-Garcia I.
    Torres M.
    Sánchez-Cabo F.
    Computers in Biology and Medicine, 2024, 176
  • [25] A deep generative model of 3D single-cell organization
    Donovan-Maiye, Rory M.
    Brown, Jackson M.
    Chan, Caleb K.
    Ding, Liya
    Yan, Calysta
    Gaudreault, Nathalie
    Theriot, Julie A.
    Maleckar, Mary M.
    Knijnenburg, Theo A.
    Johnson, Gregory R.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)
  • [26] A single-cell atlas of mouse olfactory bulb chromatin accessibility
    Yin Chen
    Xiangning Ding
    Shiyou Wang
    Peiwen Ding
    Zaoxu Xu
    Jiankang Li
    Mingyue Wang
    Rong Xiang
    Xiaoling Wang
    Haoyu Wang
    Qikai Feng
    Jiaying Qiu
    Feiyue Wang
    Zhen Huang
    Xingliang Zhang
    Gen Tang
    Shengping Tang
    Journal of Genetics and Genomics, 2021, 48 (02) : 147 - 162
  • [27] Single-cell chromatin accessibility reveals principles of regulatory variation
    Buenostro, Jason D.
    Wu, Beijing
    Litzenburger, Ulrike M.
    Ruff, Dave
    Gonzales, Michael L.
    Snyder, Michael P.
    Chang, Howard Y.
    Greenleaf, William J.
    NATURE, 2015, 523 (7561) : 486 - U264
  • [28] Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility
    Xing, Qiao Rui
    El Farran, Chadi A.
    Zeng, Ying Ying
    Yi, Yao
    Warrier, Tushar
    Gautam, Pradeep
    Collins, James J.
    Xu, Jian
    Droge, Peter
    Koh, Cheng-Gee
    Li, Hu
    Zhang, Li-Feng
    Loh, Yuin-Han
    GENOME RESEARCH, 2020, 30 (07) : 1027 - 1039
  • [29] Single-cell chromatin accessibility and transcriptome atlas of mouse embryos
    Jiang, Shan
    Huang, Zheng
    Li, Yun
    Yu, Chengwei
    Yu, Hao
    Ke, Yuwen
    Jiang, Lan
    Liu, Jiang
    CELL REPORTS, 2023, 42 (03):
  • [30] A single-cell atlas of mouse olfactory bulb chromatin accessibility
    Chen, Yin
    Ding, Xiangning
    Wang, Shiyou
    Ding, Peiwen
    Xu, Zaoxu
    Li, Jiankang
    Wang, Mingyue
    Xiang, Rong
    Wang, Xiaoling
    Wang, Haoyu
    Feng, Qikai
    Qiu, Jiaying
    Wang, Feiyue
    Huang, Zhen
    Zhang, Xingliang
    Tang, Gen
    Tang, Shengping
    JOURNAL OF GENETICS AND GENOMICS, 2021, 48 (02) : 147 - 162