PeakVI: A deep generative model for single-cell chromatin accessibility analysis

被引:17
|
作者
Ashuach, Tal [1 ]
Reidenbach, Daniel A. [2 ]
Gayoso, Adam [1 ]
Yosef, Nir [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Ragon Inst MGH MIT & Harvard, Cambridge, MA 02139 USA
[4] Chan Zuckerberg BioHub, San Francisco, CA 94158 USA
来源
CELL REPORTS METHODS | 2022年 / 2卷 / 03期
关键词
deep learning; single-cell ATAC-seq; single-cell chromatin accessibility; single-cell genomics;
D O I
10.1016/j.crmeth.2022.100182
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of sparsity, and scale of the generated data make its analysis challenging. Here, we present PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch effects and accounting for technical effects, such as library size and region-specific biases. In addition, PeakVI provides a technique for identifying differential accessibility at a single-region resolution, which can be used for cell-type annotation as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A comparative atlas of single-cell chromatin accessibility in the human brain
    Li, Yang Eric
    Preissl, Sebastian
    Miller, Michael
    Johnson, Nicholas D.
    Wang, Zihan
    Jiao, Henry
    Zhu, Chenxu
    Wang, Zhaoning
    Xie, Yang
    Poirion, Olivier
    Kern, Colin
    Pinto-Duarte, Antonio
    Tian, Wei
    Siletti, Kimberly
    Emerson, Nora
    Osteen, Julia
    Lucero, Jacinta
    Lin, Lin
    Yang, Qian
    Zhu, Quan
    Zemke, Nathan
    Espinoza, Sarah
    Yanny, Anna Marie
    Nyhus, Julie
    Dee, Nick
    Casper, Tamara
    Shapovalova, Nadiya
    Hirschstein, Daniel
    Hodge, Rebecca D.
    Linnarsson, Sten
    Bakken, Trygve
    Levi, Boaz
    Keene, C. Dirk
    Shang, Jingbo
    Lein, Ed
    Wang, Allen
    Behrens, M. Margarita
    Ecker, Joseph R.
    Ren, Bing
    SCIENCE, 2023, 382 (6667) : 180 - +
  • [32] Single-cell chromatin accessibility reveals principles of regulatory variation
    Jason D. Buenrostro
    Beijing Wu
    Ulrike M. Litzenburger
    Dave Ruff
    Michael L. Gonzales
    Michael P. Snyder
    Howard Y. Chang
    William J. Greenleaf
    Nature, 2015, 523 : 486 - 490
  • [33] A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
    Minoura, Kodai
    Abe, Ko
    Nam, Hyunha
    Nishikawa, Hiroyoshi
    Shimamura, Teppei
    CELL REPORTS METHODS, 2021, 1 (05):
  • [34] Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
    Zuo, Chunman
    Chen, Luonan
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [35] IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles
    Jiang, Junyao
    Lyu, Pin
    Li, Jinlian
    Huang, Sunan
    Tao, Jiawang
    Blackshaw, Seth
    Qian, Jiang
    Wang, Jie
    ISCIENCE, 2022, 25 (11)
  • [36] Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes
    Chan Gu
    Shanling Liu
    Qihong Wu
    Lin Zhang
    Fan Guo
    Cell Research, 2019, 29 : 110 - 123
  • [37] Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes
    Gu, Chan
    Liu, Shanling
    Wu, Qihong
    Zhang, Lin
    Guo, Fan
    CELL RESEARCH, 2019, 29 (02) : 110 - 123
  • [38] scPreGAN, a deep generative model for predicting the response of single-cell expression to perturbation
    Wei, Xiajie
    Dong, Jiayi
    Wang, Fei
    BIOINFORMATICS, 2022, 38 (13) : 3377 - 3384
  • [39] Renin Cell Development: Insights From Chromatin Accessibility and Single-Cell Transcriptomics
    Martini, Alexandre G.
    Smith, Jason P.
    Medrano, Silvia
    Finer, Gal
    Sheffield, Nathan C.
    Sequeira-Lopez, Maria Luisa S.
    Gomez, R. Ariel
    CIRCULATION RESEARCH, 2023, 133 (04) : 369 - 371
  • [40] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928