PeakVI: A deep generative model for single-cell chromatin accessibility analysis

被引:17
|
作者
Ashuach, Tal [1 ]
Reidenbach, Daniel A. [2 ]
Gayoso, Adam [1 ]
Yosef, Nir [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Ragon Inst MGH MIT & Harvard, Cambridge, MA 02139 USA
[4] Chan Zuckerberg BioHub, San Francisco, CA 94158 USA
来源
CELL REPORTS METHODS | 2022年 / 2卷 / 03期
关键词
deep learning; single-cell ATAC-seq; single-cell chromatin accessibility; single-cell genomics;
D O I
10.1016/j.crmeth.2022.100182
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of sparsity, and scale of the generated data make its analysis challenging. Here, we present PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch effects and accounting for technical effects, such as library size and region-specific biases. In addition, PeakVI provides a technique for identifying differential accessibility at a single-region resolution, which can be used for cell-type annotation as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Integrated Single-Cell Transcriptomics and Chromatin Accessibility Analysis Reveals Regulators of Mammary Epithelial Cell Identity
    Pervolarakis, Nicholas
    Nguyen, Quy H.
    Williams, Justice
    Gong, Yanwen
    Gutierrez, Guadalupe
    Sun, Peng
    Jhutty, Darisha
    Zheng, Grace X. Y.
    Nemec, Corey M.
    Dai, Xing
    Watanabe, Kazuhide
    Kessenbrock, Kai
    CELL REPORTS, 2020, 33 (03):
  • [42] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928
  • [43] High-throughput chromatin accessibility profiling at single-cell resolution
    Anja Mezger
    Sandy Klemm
    Ishminder Mann
    Kara Brower
    Alain Mir
    Magnolia Bostick
    Andrew Farmer
    Polly Fordyce
    Sten Linnarsson
    William Greenleaf
    Nature Communications, 9
  • [44] Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
    Cusanovich, Darren A.
    Daza, Riza
    Adey, Andrew
    Pliner, Hannah A.
    Christiansen, Lena
    Gunderson, Kevin L.
    Steemers, Frank J.
    Trapnell, Cole
    Shendure, Jay
    SCIENCE, 2015, 348 (6237) : 910 - 914
  • [45] High-throughput chromatin accessibility profiling at single-cell resolution
    Mezger, Anja
    Klemm, Sandy
    Mann, Ishminder
    Brower, Kara
    Mir, Alain
    Bostick, Magnolia
    Farmer, Andrew
    Fordyce, Polly
    Linnarsson, Sten
    Greenleaf, William
    NATURE COMMUNICATIONS, 2018, 9
  • [46] Dynamics and regulation of mitotic chromatin accessibility bookmarking at single-cell resolution
    Yu, Qiaoni
    Liu, Xu
    Fang, Jingwen
    Wu, Huihui
    Guo, Chuang
    Zhang, Wen
    Liu, Nianping
    Jiang, Chen
    Sha, Qing
    Yuan, Xiao
    Wang, Zhikai
    Qu, Kun
    SCIENCE ADVANCES, 2023, 9 (04)
  • [47] Single-cell chromatin accessibility and transcriptomic characterization of Behcet's disease
    Shi, Wen
    Ye, Jinguo
    Shi, Zhuoxing
    Pan, Caineng
    Zhang, Qikai
    Lin, Yuheng
    Liang, Dan
    Liu, Yizhi
    Lin, Xianchai
    Zheng, Yingfeng
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [48] Simple oligonucleotide-based multiplexing of single-cell chromatin accessibility
    Wang, Kaile
    Xiao, Zhenna
    Yan, Yun
    Ye, Rui
    Hu, Min
    Bai, Shanshan
    Sei, Emi
    Qiao, Yawei
    Chen, Hui
    Lim, Bora
    Lin, Steven H.
    Navin, Nicholas E.
    MOLECULAR CELL, 2021, 81 (20) : 4319 - +
  • [49] Single-cell chromatin accessibility and transcriptomic characterization of Behcet’s disease
    Wen Shi
    Jinguo Ye
    Zhuoxing Shi
    Caineng Pan
    Qikai Zhang
    Yuheng Lin
    Dan Liang
    Yizhi Liu
    Xianchai Lin
    Yingfeng Zheng
    Communications Biology, 6
  • [50] scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation
    Wangwu, Jiaxuan
    Sun, Zexuan
    Lin, Zhixiang
    BIOINFORMATICS, 2021, 37 (21) : 3874 - 3880