Deep generative modeling for single-cell transcriptomics

被引:0
|
作者
Romain Lopez
Jeffrey Regier
Michael B. Cole
Michael I. Jordan
Nir Yosef
机构
[1] University of California,Department of Electrical Engineering and Computer Sciences
[2] Berkeley,Department of Physics
[3] University of California,Department of Statistics
[4] Berkeley,undefined
[5] University of California,undefined
[6] Berkeley,undefined
[7] Ragon Institute of MGH,undefined
[8] MIT,undefined
[9] and Harvard,undefined
[10] Chan Zuckerberg BioHub,undefined
来源
Nature Methods | 2018年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells (https://github.com/YosefLab/scVI). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task.
引用
收藏
页码:1053 / 1058
页数:5
相关论文
共 50 条
  • [1] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    [J]. NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [2] Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models
    Xu, Chenling
    Lopez, Romain
    Mehlman, Edouard
    Regier, Jeffrey
    Jordan, Michael, I
    Yosef, Nir
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2021, 17 (01)
  • [3] Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope
    Xiaomeng Wan
    Jiashun Xiao
    Sindy Sing Ting Tam
    Mingxuan Cai
    Ryohichi Sugimura
    Yang Wang
    Xiang Wan
    Zhixiang Lin
    Angela Ruohao Wu
    Can Yang
    [J]. Nature Communications, 14
  • [4] Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope
    Wan, Xiaomeng
    Xiao, Jiashun
    Tam, Sindy Sing Ting
    Cai, Mingxuan
    Sugimura, Ryohichi
    Wang, Yang
    Wan, Xiang
    Lin, Zhixiang
    Wu, Angela Ruohao
    Yang, Can
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Trade-off between conservation of biological variation and batch effect removal in deep generative modeling for single-cell transcriptomics
    Li, Hui
    McCarthy, Davis J.
    Shim, Heejung
    Wei, Susan
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)
  • [6] Trade-off between conservation of biological variation and batch effect removal in deep generative modeling for single-cell transcriptomics
    Hui Li
    Davis J. McCarthy
    Heejung Shim
    Susan Wei
    [J]. BMC Bioinformatics, 23
  • [7] Deep generative models in single-cell omics
    Rivero-Garcia, Inés
    Torres, Miguel
    Sánchez-Cabo, Fátima
    [J]. Computers in Biology and Medicine, 2024, 176
  • [8] Integrating single-cell transcriptomics and microcircuit computer modeling
    Reddy, Vineet
    Sherif, Mohamed
    Shukla, Rammohan
    [J]. CURRENT OPINION IN PHARMACOLOGY, 2021, 60 : 34 - 39
  • [9] Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics
    Cheng, Yue
    Su, Yanchi
    Yu, Zhuohan
    Liang, Yanchun
    Wong, Ka-Chun
    Li, Xiangtao
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 5036 - 5044
  • [10] Toward modeling metabolic state from single-cell transcriptomics
    Hrovatin, Karin
    Fischer, David S.
    Theis, Fabian J.
    [J]. MOLECULAR METABOLISM, 2022, 57