PEMFC Fractional-order Subspace Identification Model

被引:0
|
作者
Sun Chengshuo [1 ]
Qi Zhidong [1 ]
Qin Hao [1 ]
Shan Liang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
关键词
PEMFC; fractional subspace identification; weight matrix; ALMBO; OPTIMIZATION; ENERGY; SYSTEM; EIS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A proton exchange membrane fuel cell (PEMFC) is a new type of hydrogen fuel cell that plays an indispensable role in an energy network. However, the multivariable and fractional-order characteristics of PEMFC make it difficult to establish a practical model. Herein, a fractional-order subspace identification model based on the adaptive monarch butterfly optimization algorithm with opposition-based learning (ALMBO) algorithm is proposed for PEMFC. Introducing the fractional-order theory into the subspace identification method by adopting a Poisson filter for with input and output data, a weight matrix is proposed to improve the identification accuracy. Additionally, the ALMBO algorithm is employed to optimize the parameters of the Poisson filter and fractional order, which introduces an opposition-based learning strategy into the migration operator and incorporates adaptive weights to improve the optimization accuracy and prevent falling into a locally optimal solution. Finally, the PEMFC fractional-order subspace identification model is established, which can accurately describe the dynamic process of PEMFC.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [31] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146
  • [32] A fractional-order model for MINMOD Millennium
    Cho, Yongjin
    Kim, Imbunm
    Sheen, Dongwoo
    [J]. MATHEMATICAL BIOSCIENCES, 2015, 262 : 36 - 45
  • [33] A Study of a Fractional-Order Cholera Model
    Javidi, Mohammad
    Ahmad, Bashir
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2195 - 2206
  • [34] Fractional-order system identification for health monitoring
    Leyden, Kevin
    Goodwine, Bill
    [J]. NONLINEAR DYNAMICS, 2018, 92 (03) : 1317 - 1334
  • [35] CHAOS IN FRACTIONAL-ORDER POPULATION MODEL
    Petras, Ivo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [36] Fractional-Order Model of DC Motor
    Cipin, R.
    Ondrusek, C.
    Huzlik, R.
    [J]. MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 363 - 370
  • [37] Hierarchical fractional-order Hammerstein system identification
    Marzougui, Soumaya
    Atitallah, Asma
    Bedoui, Saida
    Abderrahim, Kamel
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (12) : 2505 - 2517
  • [38] Fractional-order model identification and indirect internal model controller design for higher-order processes
    Kumar, Deepak
    Raja, G. Lloyds
    Arrieta, Orlando
    Vilanova, Ramon
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 7270 - 7275
  • [39] Towards efficient identification of fractional-order systems
    Liang, Chen
    Chen, Mingke
    [J]. PHYSICS LETTERS A, 2024, 525
  • [40] Fractional-order system identification for health monitoring
    Kevin Leyden
    Bill Goodwine
    [J]. Nonlinear Dynamics, 2018, 92 : 1317 - 1334