PEMFC Fractional-order Subspace Identification Model

被引:0
|
作者
Sun Chengshuo [1 ]
Qi Zhidong [1 ]
Qin Hao [1 ]
Shan Liang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
关键词
PEMFC; fractional subspace identification; weight matrix; ALMBO; OPTIMIZATION; ENERGY; SYSTEM; EIS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A proton exchange membrane fuel cell (PEMFC) is a new type of hydrogen fuel cell that plays an indispensable role in an energy network. However, the multivariable and fractional-order characteristics of PEMFC make it difficult to establish a practical model. Herein, a fractional-order subspace identification model based on the adaptive monarch butterfly optimization algorithm with opposition-based learning (ALMBO) algorithm is proposed for PEMFC. Introducing the fractional-order theory into the subspace identification method by adopting a Poisson filter for with input and output data, a weight matrix is proposed to improve the identification accuracy. Additionally, the ALMBO algorithm is employed to optimize the parameters of the Poisson filter and fractional order, which introduces an opposition-based learning strategy into the migration operator and incorporates adaptive weights to improve the optimization accuracy and prevent falling into a locally optimal solution. Finally, the PEMFC fractional-order subspace identification model is established, which can accurately describe the dynamic process of PEMFC.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 50 条
  • [21] Recursive Identification for MIMO Fractional-Order Hammerstein Model Based on AIAGS
    Jin, Qibing
    Wang, Bin
    Wang, Zeyu
    [J]. MATHEMATICS, 2022, 10 (02)
  • [22] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [23] Parametric identification of fractional-order nonlinear systems
    Mani, Ajith Kuriakose
    Narayanan, M. D.
    Sen, Mihir
    [J]. NONLINEAR DYNAMICS, 2018, 93 (02) : 945 - 960
  • [24] A Novel Fractional-Order RothC Model
    Bohaienko, Vsevolod
    Diele, Fasma
    Marangi, Carmela
    Tamborrino, Cristiano
    Aleksandrowicz, Sebastian
    Wozniak, Edyta
    [J]. MATHEMATICS, 2023, 11 (07)
  • [25] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [26] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    [J]. 2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [27] A fractional-order infectivity SIR model
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 86 - 93
  • [28] A Study of a Fractional-Order Cholera Model
    Javidi, Mohammad
    Ahmad, Bashir
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2195 - 2206
  • [29] A fractional-order model for MINMOD Millennium
    Cho, Yongjin
    Kim, Imbunm
    Sheen, Dongwoo
    [J]. MATHEMATICAL BIOSCIENCES, 2015, 262 : 36 - 45
  • [30] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146