A fractional-order model for MINMOD Millennium

被引:20
|
作者
Cho, Yongjin [1 ]
Kim, Imbunm [1 ]
Sheen, Dongwoo [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Computat Sci & Technol, Seoul 151747, South Korea
关键词
Fractional derivative; Glucose-insulin; Diabetes; Minimal model; INSULIN SENSITIVITY; MINIMAL MODEL; GLUCOSE-TOLERANCE; BLOOD RHEOLOGY; DYNAMICS; EXERCISE; BRAIN; INDEX;
D O I
10.1016/j.mbs.2014.11.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MINMOD Millennium has been widely used to estimate insulin sensitivity (S-1) in glucose-insulin dynamics. In order to explain the rheological behavior of glucose-insulin we attempt to modify MINMOD Millennium with fractional-order differentiation of order alpha epsilon (0,1]. We show that the new modified model has non-negative, bounded solutions and a stable equilibrium point. Quasi-optimal fractional orders and parameters are estimated by using a nonlinear weighted least-squares method, the Levenberg-Marquardt algorithm, and the fractional Adams-Bashforth-Moulton method for several subjects (normal subjects and type 2 diabetic patients). The numerical results confirm that S1 is significantly lower in diabetics than in non-diabetics. In addition, we explain the new factor (tau(1-alpha)) determining glucose tolerance and the relation between S-1 and tau(1-alpha). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 45
页数:10
相关论文
共 50 条
  • [1] Fractional-Order Traveling Wave Approximations for a Fractional-Order Neural Field Model
    Gonzalez-Ramirez, Laura R.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [2] Comparison of Varied Order for Fractional-Order Model
    Yusof, Nuzaihan Mhd
    Ishak, Norlela
    Adnan, Ramli
    Tajuddin, Mazidah
    Rahiman, Mohd Hezri Fazalul
    [J]. 2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 334 - 339
  • [3] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [4] A Novel Fractional-Order RothC Model
    Bohaienko, Vsevolod
    Diele, Fasma
    Marangi, Carmela
    Tamborrino, Cristiano
    Aleksandrowicz, Sebastian
    Wozniak, Edyta
    [J]. MATHEMATICS, 2023, 11 (07)
  • [5] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [6] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    [J]. 2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [7] A fractional-order infectivity SIR model
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 86 - 93
  • [8] A Study of a Fractional-Order Cholera Model
    Javidi, Mohammad
    Ahmad, Bashir
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2195 - 2206
  • [9] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146
  • [10] CHAOS IN FRACTIONAL-ORDER POPULATION MODEL
    Petras, Ivo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):