A fractional-order model for MINMOD Millennium

被引:20
|
作者
Cho, Yongjin [1 ]
Kim, Imbunm [1 ]
Sheen, Dongwoo [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Computat Sci & Technol, Seoul 151747, South Korea
关键词
Fractional derivative; Glucose-insulin; Diabetes; Minimal model; INSULIN SENSITIVITY; MINIMAL MODEL; GLUCOSE-TOLERANCE; BLOOD RHEOLOGY; DYNAMICS; EXERCISE; BRAIN; INDEX;
D O I
10.1016/j.mbs.2014.11.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MINMOD Millennium has been widely used to estimate insulin sensitivity (S-1) in glucose-insulin dynamics. In order to explain the rheological behavior of glucose-insulin we attempt to modify MINMOD Millennium with fractional-order differentiation of order alpha epsilon (0,1]. We show that the new modified model has non-negative, bounded solutions and a stable equilibrium point. Quasi-optimal fractional orders and parameters are estimated by using a nonlinear weighted least-squares method, the Levenberg-Marquardt algorithm, and the fractional Adams-Bashforth-Moulton method for several subjects (normal subjects and type 2 diabetic patients). The numerical results confirm that S1 is significantly lower in diabetics than in non-diabetics. In addition, we explain the new factor (tau(1-alpha)) determining glucose tolerance and the relation between S-1 and tau(1-alpha). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 45
页数:10
相关论文
共 50 条
  • [21] PEMFC Fractional-order Subspace Identification Model
    Sun Chengshuo
    Qi Zhidong
    Qin Hao
    Shan Liang
    [J]. CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2022, 24 (03) : 151 - 160
  • [22] Numerical analysis of fractional-order tumor model
    Sohail, Ayesha
    Arshad, Sadia
    Javed, Sana
    Maqbool, Khadija
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (05)
  • [23] A Fractional-order Model for Liquid Metal Batteries
    Xu, Cheng
    Cheng, Shijie
    Wang, Kangli
    Jiang, Kai
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4690 - 4695
  • [24] Fuzzy fractional-order model of the novel coronavirus
    Ahmad, S.
    Ullah, A.
    Shah, K.
    Salahshour, S.
    Ahmadian, A.
    Ciano, T.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [25] PEMFC Fractional-order Subspace Identification Model
    Sun Chengshuo
    Qi Zhidong
    Qin Hao
    Shan Liang
    [J]. China Petroleum Processing & Petrochemical Technology, 2022, 24 (03) : 151 - 160
  • [26] Dynamical Behaviour of a Fractional-order SEIB Model
    Roshan, Tasmia
    Ghosh, Surath
    Kumar, Sunil
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (08)
  • [27] Dynamical Analysis of a Fractional-order HIV Model
    Ye, Haiping
    Ding, Yongsheng
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 49 (03): : 255 - 268
  • [28] Synchronization in a fractional-order model of pancreatic β-cells
    E. Zambrano-Serrano
    J. M. Muñoz-Pacheco
    L. C. Gómez-Pavón
    A. Luis-Ramos
    G. Chen
    [J]. The European Physical Journal Special Topics, 2018, 227 : 907 - 919
  • [29] A new fractional-order compartmental disease model
    Luu Vu Cam Hoan
    Akinlar, Mehmet Ali
    Inc, Mustafa
    Gomez-Aguilar, J. F.
    Chu, Yu-Ming
    Almohsen, Bandar
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3187 - 3196
  • [30] Fuzzy fractional-order model of the novel coronavirus
    S. Ahmad
    A. Ullah
    K. Shah
    S. Salahshour
    A. Ahmadian
    T. Ciano
    [J]. Advances in Difference Equations, 2020