A Fractional-order Model for Liquid Metal Batteries

被引:3
|
作者
Xu, Cheng [1 ]
Cheng, Shijie [1 ]
Wang, Kangli [1 ]
Jiang, Kai [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Liquid metal battery; Fractional-order model; Parameter identification; Electrochemical impedance spectroscopy; LITHIUM-ION;
D O I
10.1016/j.egypro.2019.01.735
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The battery is one of the most important components in electrochemical energy storage systems (EESSs). Battery Management System (BMS) is developed to monitor the state of batteries to ensure the safety and reliability of battery module operation. However, the efficiency of the BMS largely depends on the accuracy of the established battery model. Recently, liquid metal battery (LMB) has attracted much attention due to its superiority in stationary energy storage. This paper presents a fractional order model (FOM) for liquid metal batteries and its parameter identification using electrochemical impedance spectroscopy (EIS). Simulations and experiments both exhibit good performance. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:4690 / 4695
页数:6
相关论文
共 50 条
  • [1] Electroviscoelasticity of liquid/liquid interfaces: fractional-order model
    Spasic, AM
    Lazarevic, MP
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 282 (01) : 223 - 230
  • [2] Physics-based fractional-order model and parameters identification of liquid metal battery
    Shi, Qionglin
    Guo, Zhenlin
    Wang, Sheng
    Yan, Shuai
    Zhou, Xianbo
    Li, Haomiao
    Wang, Kangli
    Jiang, Kai
    [J]. ELECTROCHIMICA ACTA, 2022, 428
  • [3] Fractional-Order Traveling Wave Approximations for a Fractional-Order Neural Field Model
    Gonzalez-Ramirez, Laura R.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [4] Design of a Model-based Fractional-Order Controller for Optimal Charging of Batteries
    Mohajer, Sara
    Lanusse, Patrick
    Sabatier, Jocelyn
    Cois, Olivier
    [J]. IFAC PAPERSONLINE, 2018, 51 (28): : 97 - 102
  • [5] Comparison of Varied Order for Fractional-Order Model
    Yusof, Nuzaihan Mhd
    Ishak, Norlela
    Adnan, Ramli
    Tajuddin, Mazidah
    Rahiman, Mohd Hezri Fazalul
    [J]. 2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 334 - 339
  • [6] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [7] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    [J]. 2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [8] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [9] A Novel Fractional-Order RothC Model
    Bohaienko, Vsevolod
    Diele, Fasma
    Marangi, Carmela
    Tamborrino, Cristiano
    Aleksandrowicz, Sebastian
    Wozniak, Edyta
    [J]. MATHEMATICS, 2023, 11 (07)
  • [10] A fractional-order infectivity SIR model
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 86 - 93