Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential
    Dmitriev, SV
    Kevrekidis, PG
    Yoshikawal, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (35): : 7617 - 7627
  • [22] Effect of RGUP on the nonlinear Klein-Gordon model with spontaneous symmetry breaking
    Miraboutalebi, S.
    Ahmadi, F.
    Jahangiri, A.
    PHYSICS LETTERS B, 2022, 833
  • [23] Approximate symmetry and exact solutions of the perturbed nonlinear Klein-Gordon equation
    Rahimian, Mohammad
    Nadjafikhah, Mehdi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (02): : 266 - 275
  • [24] Approximate symmetry and solutions of the nonlinear Klein-Gordon equation with a small parameter
    Rahimian, Mohammad
    Toomanian, Megerdich
    Nadjafikhah, Mehdi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (03)
  • [25] Klein-Gordon oscillator under the effects of violation of Lorentz symmetry
    Ahmed, Faizuddin
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (04)
  • [26] Nonlinear Quantum Spectroscopy Enhanced by Parity-Time Symmetry
    Kumar, Pawan
    Saravi, Sina
    Pertsch, Thomas
    Setzpfandt, Frank
    Sukhorukov, Andrey A.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [27] Normal form for travelling kinks in discrete Klein-Gordon lattices
    Institut Universitaire de France, INLN, UMR CNRS-UNSA 6618, 1361 route des Lucioles, 06560 Valbonne, France
    不详
    1600, 327-345 (April 15, 2006):
  • [28] Normal form for travelling kinks in discrete Klein-Gordon lattices
    Iooss, Gerard
    Pelinovsky, Dmitry E.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (02) : 327 - 345
  • [29] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [30] SHORT-TIME EVOLUTION OF NONLINEAR KLEIN-GORDON SYSTEMS
    GUHAROY, C
    BAGCHI, B
    SINHA, DK
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1987, 26 (04) : 395 - 399