Approximate symmetry and exact solutions of the perturbed nonlinear Klein-Gordon equation

被引:0
|
作者
Rahimian, Mohammad [1 ]
Nadjafikhah, Mehdi [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Masjed Soleiman Branch, Masjed Soleiman, Iran
[2] Iran Univ Sci & Technol, Sch Math, Dept Pure Math, Tehran 1684613114, Iran
来源
关键词
Perturbed Klein-Gordon equation; Exact solutions; Approximate symmetry; Approximate invariant solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Lie approximate symmetry analysis is applied to investigate new exact solutions of the perturbed nonlinear Klein-Gordon equation. The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. The tanh-coth method, is employed to solve some of the obtained reduced ordinary differential equations. We construct new analytical solutions with small parameter which is effectively obtained by the proposed method.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [1] Approximate symmetry and solutions of the nonlinear Klein-Gordon equation with a small parameter
    Rahimian, Mohammad
    Toomanian, Megerdich
    Nadjafikhah, Mehdi
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (03)
  • [2] Exact solutions of coupled nonlinear Klein-Gordon equation
    Shang, Desheng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1577 - 1583
  • [3] New exact solutions of nonlinear Klein-Gordon equation
    Zheng, Q
    Yue, P
    Gong, LX
    [J]. CHINESE PHYSICS, 2006, 15 (01): : 35 - 38
  • [4] Exact, approximate and asymptotic solutions of the Klein-Gordon integral equation
    Fabrikant, V. I.
    Karapetian, E.
    Kalinin, S. V.
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2019, 115 (01) : 141 - 156
  • [5] An auxiliary equation technique and exact solutions for a nonlinear Klein-Gordon equation
    Lv, Xiumei
    Lai, Shaoyong
    Wu, YongHong
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 82 - 90
  • [6] Approximate damped oscillatory solutions and error estimates for the perturbed Klein-Gordon equation
    Ye, Caier
    Zhang, Weiguo
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 70 : 49 - 57
  • [7] EXACT SOLUTION TO A NONLINEAR KLEIN-GORDON EQUATION
    BURT, PB
    REID, JL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (01) : 43 - 45
  • [8] Exact Solutions for Generalized Klein-Gordon Equation
    Yang, Libo
    Wang, Daoming
    An, Fengxian
    [J]. JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (03): : 351 - 358
  • [9] New exact solutions of the Klein-Gordon Equation
    Yang, Yunjie
    Feng, Aifang
    He, Yan
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (02): : 188 - 196
  • [10] SYMMETRY GROUP OF THE NONLINEAR KLEIN-GORDON EQUATION
    RUDRA, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : 2499 - 2504