Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555
  • [32] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499
  • [33] Decay for nonlinear Klein-Gordon equations
    Georgiev, V
    Lucente, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04): : 529 - 555
  • [34] NONLINEAR KLEIN-GORDON SOLITON MECHANICS
    REINISCH, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (21): : 3395 - 3440
  • [35] Large time asymptotics of solutions to nonlinear Klein-Gordon systems
    Sunagawa, H
    OSAKA JOURNAL OF MATHEMATICS, 2005, 42 (01) : 65 - 83
  • [36] REMARKS ON A NONLINEAR KLEIN-GORDON EQUATION
    GARUE, S
    MONTALDI, E
    LETTERE AL NUOVO CIMENTO, 1976, 17 (04): : 132 - 134
  • [37] Virtual Parity-Time Symmetry
    Li, Huanan
    Mekawy, Ahmed
    Krasnok, Alex
    Alu, Andrea
    PHYSICAL REVIEW LETTERS, 2020, 124 (19)
  • [39] Symmetry analysis of (2+1)-dimensional nonlinear Klein-Gordon equations
    Tang, XY
    Lou, SY
    CHINESE PHYSICS LETTERS, 2002, 19 (01): : 1 - 3
  • [40] Symmetry analysis of the nonlinear two-dimensional Klein-Gordon equation with a time-varying delay
    Long, Feng-Shan
    Meleshko, S. V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (13) : 4658 - 4673