Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] KINKS IN THE KLEIN-GORDON MODEL WITH ANHARMONIC INTERATOMIC INTERACTIONS - A VARIATIONAL APPROACH
    BRAUN, OM
    FEI, Z
    KIVSHAR, YS
    VAZQUEZ, L
    PHYSICS LETTERS A, 1991, 157 (4-5) : 241 - 245
  • [42] KLEIN-GORDON KINKS WITH 4TH ORDER DERIVATIVE SELFCOUPLING
    RANADA, AF
    RANADA, MF
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (12) : 2427 - 2431
  • [43] COMPOSITE MAPPING METHOD FOR GENERATION OF KINKS AND SOLITONS IN THE KLEIN-GORDON FAMILY
    JOSEPH, KB
    BABY, BV
    PHYSICAL REVIEW A, 1984, 29 (05): : 2899 - 2901
  • [44] Nonlinear scattering for a system of nonlinear Klein-Gordon equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    Wibowo, Ratno Bagus Edy
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)
  • [45] GROWTH-PROPERTIES OF STATIONARY KLEIN-GORDON EQUATIONS
    KUSANO, T
    SWANSON, CA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) : 440 - 446
  • [46] A nonlinear Klein-Gordon equation on a star graph
    Goloshchapova, Nataliia
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1742 - 1764
  • [47] Nonlinear dynamical analysis of a time-fractional Klein-Gordon equation
    El-Dib, Yusry O.
    Elgazery, Nasser S.
    Mady, Amal A.
    PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (04):
  • [48] Blowup behaviour for the nonlinear Klein-Gordon equation
    Killip, Rowan
    Stovall, Betsy
    Visan, Monica
    MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 289 - 350
  • [49] Operational Solution to the Nonlinear Klein-Gordon Equation
    Bengochea, G.
    Verde-Star, L.
    Ortigueira, M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (05) : 506 - 512
  • [50] SCATTERING OPERATOR FOR NONLINEAR KLEIN-GORDON EQUATIONS
    Hayashi, Nakao
    Naumkin, Pavel I.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) : 771 - 781