Thermomechanical stress analysis of laminated thick-film multilayer substrates

被引:13
|
作者
Kim, JS [1 ]
Paik, KW
Lim, JH
Earmme, YY
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305701, South Korea
关键词
D O I
10.1063/1.124145
中图分类号
O59 [应用物理学];
学科分类号
摘要
As an increasing number of polymer dielectric layers were laminated, the maximum bow values were measured layer by layer using a laser profilometry during thermal cycling. In the lamination process, a polymeric film is overlaid on a silicon substrate using a polymeric adhesive. Since the lamination process uses relatively thick polymer films, the classical stress analyses assuming infinitesimally thin films, are no longer effective. In this letter, a simple model based on the composite beam theory is presented to analyze the experimental results, and compared with the well-known Stoney's formula. The thermomechanical behavior of the laminated multilayer polymer films on a silicon substrate was better described by the proposed model, while an error as much as 30% was involved using Stoney's formula. The model can be applied for the design and fabrication of multilayer multichip module substrates. (C) 1999 American Institute of Physics. [S0003-6951(99)03623-2].
引用
收藏
页码:3507 / 3509
页数:3
相关论文
共 50 条