Multivariate fuzzy k-modes algorithm

被引:2
|
作者
Maciel, Diego B. M. [1 ]
Amaral, Getulio J. A. [2 ]
de Souza, Renata M. C. R. [3 ]
Pimentel, Bruno A. [4 ]
机构
[1] Univ Fed Amazonas UFAM, Fac Estudos Sociais, Av Gen Rodrigo Octavio Jordao Ramos 3000, BR-69077000 Manaus, AM, Brazil
[2] Univ Fed Pernambuco, Dept Estat, CCEN, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[4] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
关键词
Fuzzy clustering; Unsupervised pattern recognition; Multivariate membership degrees; Categorical data; C-MEANS;
D O I
10.1007/s10044-015-0465-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fuzzy k-modes clustering, there is just one membership degree of interest by class for each individual which cannot be sufficient to model ambiguity of data precisely. It is known that the essence of a multivariate thinking allows to expose the inherent structure and meaning revealed within a set of variables classified. In this paper, a multivariate approach for membership degrees is presented to better handle ambiguous data that share properties of different clusters. This method is compared with other fuzzy k-modes methods of the literature based on a multivariate internal index that is also proposed in this paper. Synthetic and real categorical data sets are considered in this study.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [41] Software cost estimation based on modified K-Modes clustering Algorithm
    Partha Sarathi Bishnu
    Vandana Bhattacherjee
    [J]. Natural Computing, 2016, 15 : 415 - 422
  • [42] Improving K-modes algorithm considering frequencies of attribute values in mode
    He, ZY
    Deng, SC
    Xu, XF
    [J]. COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS, 2005, 3801 : 157 - 162
  • [43] A Modified Initialization Method to Find an Initial Center for Fuzzy K-Modes Clustering
    Saranya, S.
    Jayanthi, P.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,
  • [44] A Dynamic Web Recommender System Using Hard and Fuzzy K-Modes Clustering
    Christodoulou, Panayiotis
    Lestas, Marios
    Andreou, Andreas S.
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 40 - 51
  • [45] Incremental Rough Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, 2013, 8271 : 13 - 24
  • [46] Decremental Rough Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. ADAPTIVE AND INTELLIGENT SYSTEMS, ICAIS 2014, 2014, 8779 : 50 - 59
  • [47] Approximation algorithms for K-modes clustering
    He, Zengyou
    Deng, Shengchun
    Xu, Xiaofei
    [J]. COMPUTATIONAL INTELLIGENCE, PT 2, PROCEEDINGS, 2006, 4114 : 296 - 302
  • [48] A novel initialisation based on hospital-resident assignment for the k-modes algorithm
    Gillard, Jonathan
    Knight, Vincent
    Wilde, Henry
    [J]. SOFT COMPUTING, 2023, 27 (14) : 9441 - 9457
  • [49] A dissimilarity measure for mixed nominal and ordinal attribute data in k-Modes algorithm
    Yuan, Fang
    Yang, Youlong
    Yuan, Tiantian
    [J]. APPLIED INTELLIGENCE, 2020, 50 (05) : 1498 - 1509
  • [50] A dissimilarity measure for mixed nominal and ordinal attribute data in k-Modes algorithm
    Fang Yuan
    Youlong Yang
    Tiantian Yuan
    [J]. Applied Intelligence, 2020, 50 : 1498 - 1509