Multivariate fuzzy k-modes algorithm

被引:2
|
作者
Maciel, Diego B. M. [1 ]
Amaral, Getulio J. A. [2 ]
de Souza, Renata M. C. R. [3 ]
Pimentel, Bruno A. [4 ]
机构
[1] Univ Fed Amazonas UFAM, Fac Estudos Sociais, Av Gen Rodrigo Octavio Jordao Ramos 3000, BR-69077000 Manaus, AM, Brazil
[2] Univ Fed Pernambuco, Dept Estat, CCEN, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[4] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
关键词
Fuzzy clustering; Unsupervised pattern recognition; Multivariate membership degrees; Categorical data; C-MEANS;
D O I
10.1007/s10044-015-0465-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fuzzy k-modes clustering, there is just one membership degree of interest by class for each individual which cannot be sufficient to model ambiguity of data precisely. It is known that the essence of a multivariate thinking allows to expose the inherent structure and meaning revealed within a set of variables classified. In this paper, a multivariate approach for membership degrees is presented to better handle ambiguous data that share properties of different clusters. This method is compared with other fuzzy k-modes methods of the literature based on a multivariate internal index that is also proposed in this paper. Synthetic and real categorical data sets are considered in this study.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [31] Scalable Laplacian K-modes
    Ziko, Imtiaz Masud
    Granger, Eric
    Ben Ayed, Ismail
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [32] A note on K-modes clustering
    Huang, ZX
    Ng, MK
    [J]. JOURNAL OF CLASSIFICATION, 2003, 20 (02) : 257 - 261
  • [33] Decremental Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. TWELFTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2013), 2013, 257 : 15 - 24
  • [34] Incremental Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2013, 8170 : 293 - 303
  • [35] A Note on K-modes Clustering
    Zhexue Huang
    Michael K. Ng
    [J]. Journal of Classification, 2003, 20 : 257 - 261
  • [36] Categorical fuzzy k-modes clustering with automated feature weight learning
    Saha, Arkajyoti
    Das, Swagatam
    [J]. NEUROCOMPUTING, 2015, 166 : 422 - 435
  • [37] Research on Seafood Traceable Data Based on k-Modes Clustering Algorithm
    Ge, Li
    Li, Jiajun
    Chen, Jun
    [J]. JOURNAL OF COASTAL RESEARCH, 2020, : 73 - 77
  • [38] Software cost estimation based on modified K-Modes clustering Algorithm
    Bishnu, Partha Sarathi
    Bhattacherjee, Vandana
    [J]. NATURAL COMPUTING, 2016, 15 (03) : 415 - 422
  • [39] A Global-Relationship Dissimilarity Measure for the k-Modes Clustering Algorithm
    Zhou, Hongfang
    Zhang, Yihui
    Liu, Yibin
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [40] EGA-FMC: enhanced genetic algorithm-based fuzzy k-modes clustering for categorical data
    Narasimhan, Medhini
    Balasubramanian, Balaji
    Kumar, Suryansh D.
    Patil, Nagamma
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 11 (04) : 219 - 228