Categorical fuzzy k-modes clustering with automated feature weight learning

被引:22
|
作者
Saha, Arkajyoti [1 ]
Das, Swagatam [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Kolkata 700108, India
[2] Indian Stat Inst, Elect & Commun Sci Unit, Kolkata 700108, India
关键词
Fuzzy clustering; WFk-modes; Fuzzy K-modes; Automated feature weights; Categorical data; ALGORITHM; INFORMATION;
D O I
10.1016/j.neucom.2015.03.037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents and investigates a new variant of the fuzzy k-Modes clustering algorithm for categorical data with automated feature weight learning. The modification strengthens the classical fuzzy k-Modes algorithm by associating higher weights to features which are instrumental in recognizing the clustering pattern of the data. A statistical comparison between the performances of the proposed algorithm and the conventional fuzzy k-Modes algorithm on synthetic and real world datasets, have been carried out with respect to mean values, best performance count, and medians. We take a novel approach towards the comparison of the fuzziness of the obtained clusters. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The results obtained, shows that the proposed algorithm enjoys an edge over the conventional fuzzy k-Modes algorithm both in terms of Rand Index and fuzziness measures. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 50 条
  • [1] FKMAWCW: Categorical fuzzy k-modes clustering with automated attribute-weight and cluster-weight learning
    Oskouei, Amin Golzari
    Balafar, Mohammad Ali
    Motamed, Cina
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 153
  • [2] A fuzzy k-modes algorithm for clustering categorical data
    Huang, ZX
    Ng, MK
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (04) : 446 - 452
  • [3] Clustering of Categorical Data Using Intuitionistic Fuzzy k-modes
    Mehta, Darshan
    Tripathy, B. K.
    [J]. PROCEEDINGS OF SIXTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2016), VOL 1, 2017, 546 : 254 - 263
  • [4] A genetic fuzzy k-Modes algorithm for clustering categorical data
    Gan, G.
    Wu, J.
    Yang, Z.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1615 - 1620
  • [5] Feature-Weighted Fuzzy K-Modes Clustering
    Nataliani, Yessica
    Yang, Miin-Shen
    [J]. 2019 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2019), 2019, : 63 - 68
  • [6] Initialization of K-Modes Clustering for Categorical Data
    Li Tao-ying
    Chen Yan
    Jin Zhi-hong
    Li Ye
    [J]. 2013 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (ICMSE), 2013, : 107 - 112
  • [7] A Global K-modes Algorithm for Clustering Categorical Data
    Bai Tian
    Kulikowski, C. A.
    Gong Leiguang
    Yang Bin
    Huang Lan
    Zhou Chunguang
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (03) : 460 - 465
  • [8] An efficient k-modes algorithm for clustering categorical datasets
    Dorman, Karin S.
    Maitra, Ranjan
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (01) : 83 - 97
  • [9] Clustering categorical data: Soft rounding k-modes
    Gavva, Surya Teja
    Karthik, C. S.
    Punna, Sharath
    [J]. INFORMATION AND COMPUTATION, 2024, 296
  • [10] A genetic k-modes algorithm for clustering categorical data
    Gan, GJ
    Yang, ZJ
    Wu, JH
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 195 - 202