A genetic fuzzy k-Modes algorithm for clustering categorical data

被引:78
|
作者
Gan, G. [1 ]
Wu, J. [1 ]
Yang, Z. [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
关键词
Genetic algorithm; k-Modes; Fuzzy logic; Categorical data; CLASSIFICATION;
D O I
10.1016/j.eswa.2007.11.045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fuzzy k-Modes algorithm introduced by Huang and Ng [Huang, Z., & Ng, M. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446-452] is very effective for identifying Cluster structures from categorical data sets. However. the algorithm may stop at locally optimal solutions. In order to search for appropriate fuzzy membership matrices which can minimize the fuzzy objective function, we present a hybrid genetic fuzzy k-Modes algorithm in this paper. To circumvent the expensive crossover operator in genetic algorithms (GAs), we hybridize GA with the fuzzy k-Modes algorithm and define the crossover operator as a one-step fuzzy k-Modes algorithm. Experiments on two real data sets are carried Out to illustrate the performance of the proposed algorithm. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1615 / 1620
页数:6
相关论文
共 50 条
  • [1] A fuzzy k-modes algorithm for clustering categorical data
    Huang, ZX
    Ng, MK
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (04) : 446 - 452
  • [2] A genetic k-modes algorithm for clustering categorical data
    Gan, GJ
    Yang, ZJ
    Wu, JH
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 195 - 202
  • [3] Genetic intuitionistic weighted fuzzy k-modes algorithm for categorical data
    Kuo, R. J.
    Thi Phuong Quyen Nguyen
    [J]. NEUROCOMPUTING, 2019, 330 : 116 - 126
  • [4] A Global K-modes Algorithm for Clustering Categorical Data
    Bai Tian
    Kulikowski, C. A.
    Gong Leiguang
    Yang Bin
    Huang Lan
    Zhou Chunguang
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (03) : 460 - 465
  • [5] Clustering of Categorical Data Using Intuitionistic Fuzzy k-modes
    Mehta, Darshan
    Tripathy, B. K.
    [J]. PROCEEDINGS OF SIXTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2016), VOL 1, 2017, 546 : 254 - 263
  • [6] A weighting k-modes algorithm for subspace clustering of categorical data
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Zhao, Xingwang
    [J]. NEUROCOMPUTING, 2013, 108 : 23 - 30
  • [7] A MD fuzzy k-modes Algorithm for Clustering Categorical Matrix-Object Data
    Li, Shunyong
    Zhang, Miaomiao
    Cao, Fuyuan
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (06): : 1325 - 1337
  • [8] EGA-FMC: enhanced genetic algorithm-based fuzzy k-modes clustering for categorical data
    Narasimhan, Medhini
    Balasubramanian, Balaji
    Kumar, Suryansh D.
    Patil, Nagamma
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 11 (04) : 219 - 228
  • [9] Initialization of K-Modes Clustering for Categorical Data
    Li Tao-ying
    Chen Yan
    Jin Zhi-hong
    Li Ye
    [J]. 2013 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (ICMSE), 2013, : 107 - 112
  • [10] An efficient k-modes algorithm for clustering categorical datasets
    Dorman, Karin S.
    Maitra, Ranjan
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (01) : 83 - 97