Multivariate fuzzy k-modes algorithm

被引:2
|
作者
Maciel, Diego B. M. [1 ]
Amaral, Getulio J. A. [2 ]
de Souza, Renata M. C. R. [3 ]
Pimentel, Bruno A. [4 ]
机构
[1] Univ Fed Amazonas UFAM, Fac Estudos Sociais, Av Gen Rodrigo Octavio Jordao Ramos 3000, BR-69077000 Manaus, AM, Brazil
[2] Univ Fed Pernambuco, Dept Estat, CCEN, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[4] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
关键词
Fuzzy clustering; Unsupervised pattern recognition; Multivariate membership degrees; Categorical data; C-MEANS;
D O I
10.1007/s10044-015-0465-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fuzzy k-modes clustering, there is just one membership degree of interest by class for each individual which cannot be sufficient to model ambiguity of data precisely. It is known that the essence of a multivariate thinking allows to expose the inherent structure and meaning revealed within a set of variables classified. In this paper, a multivariate approach for membership degrees is presented to better handle ambiguous data that share properties of different clusters. This method is compared with other fuzzy k-modes methods of the literature based on a multivariate internal index that is also proposed in this paper. Synthetic and real categorical data sets are considered in this study.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [21] On the impact of dissimilarity measure in k-modes clustering algorithm
    Ng, Michael K.
    Li, Mark Junjie
    Huang, Joshua Zhexue
    He, Zengyou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (03) : 503 - 507
  • [22] A Moving Shape-based Robust Fuzzy K-modes Clustering Algorithm for Electricity Profiles
    Liu, Chang
    Wang, Xiaodi
    Huang, Yuan
    Liu, Youbo
    Li, Ran
    Li, Yang
    Liu, Junyong
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2020, 187
  • [23] Cluster center initialization algorithm for K-modes clustering
    Khan, Shehroz S.
    Ahmad, Amir
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (18) : 7444 - 7456
  • [24] The k-modes algorithm with entropy based similarity coefficient
    Sangam, Ravi Sankar
    Om, Hari
    [J]. BIG DATA, CLOUD AND COMPUTING CHALLENGES, 2015, 50 : 93 - 98
  • [25] Clustering of Categorical Data Using Intuitionistic Fuzzy k-modes
    Mehta, Darshan
    Tripathy, B. K.
    [J]. PROCEEDINGS OF SIXTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2016), VOL 1, 2017, 546 : 254 - 263
  • [26] Rough Set Based Fuzzy K-Modes for Categorical Data
    Saha, Indrajit
    Sarkar, Jnanendra Prasad
    Maulik, Ujjwal
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 323 - 330
  • [27] K-modes clustering
    Chaturvedi, A
    Green, PE
    Carroll, JD
    [J]. JOURNAL OF CLASSIFICATION, 2001, 18 (01) : 35 - 55
  • [28] K-modes Clustering
    Anil Chaturvedi
    Paul E. Green
    J. Douglas Caroll
    [J]. Journal of Classification, 2001, 18 : 35 - 55
  • [29] Computation of Initial Modes for K-modes Clustering Algorithm using Evidence Accumulation
    Khan, Shehroz S.
    Kant, Shri
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2784 - 2789
  • [30] A weighting k-modes algorithm for subspace clustering of categorical data
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Zhao, Xingwang
    [J]. NEUROCOMPUTING, 2013, 108 : 23 - 30