On the impact of dissimilarity measure in k-modes clustering algorithm

被引:137
|
作者
Ng, Michael K. [1 ]
Li, Mark Junjie
Huang, Joshua Zhexue
He, Zengyou
机构
[1] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, E Business Technol Inst, Hong Kong, Hong Kong, Peoples R China
[3] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
data mining; clustering; k-modes algorithm; categorical data;
D O I
10.1109/TPAMI.2007.53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes extensions to the k-modes algorithm for clustering categorical data. By modifying a simple matching dissimilarity measure for categorical objects, a heuristic approach was developed in [4], [12] which allows the use of the k- modes paradigm to obtain a cluster with strong intrasimilarity and to efficiently cluster large categorical data sets. The main aim of this paper is to rigorously derive the updating formula of the k- modes clustering algorithm with the new dissimilarity measure and the convergence of the algorithm under the optimization framework.
引用
收藏
页码:503 / 507
页数:5
相关论文
共 50 条
  • [1] A dissimilarity measure for the k-Modes clustering algorithm
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Bai, Liang
    Dang, Chuangyin
    KNOWLEDGE-BASED SYSTEMS, 2012, 26 : 120 - 127
  • [2] A Global-Relationship Dissimilarity Measure for the k-Modes Clustering Algorithm
    Zhou, Hongfang
    Zhang, Yihui
    Liu, Yibin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [3] K-Modes clustering algorithm based on a new distance measure
    Liang, Jiye
    Bai, Liang
    Cao, Fuyuan
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2010, 47 (10): : 1749 - 1755
  • [4] An Improved K-modes Clustering Algorithm Based on Intra-cluster and Inter-cluster Dissimilarity Measure
    Zhou, Hongfang
    Zhang, Yihui
    Liu, Yibin
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE & APPLICATION TECHNOLOGY (ICCIA 2017), 2017, 74 : 410 - 418
  • [5] A dissimilarity measure for mixed nominal and ordinal attribute data in k-Modes algorithm
    Yuan, Fang
    Yang, Youlong
    Yuan, Tiantian
    APPLIED INTELLIGENCE, 2020, 50 (05) : 1498 - 1509
  • [6] A dissimilarity measure for mixed nominal and ordinal attribute data in k-Modes algorithm
    Fang Yuan
    Youlong Yang
    Tiantian Yuan
    Applied Intelligence, 2020, 50 : 1498 - 1509
  • [7] DP- k-modes: A self-tuning k-modes clustering algorithm
    Xie, Juanying
    Wang, Mingzhao
    Lu, Xiaoxiao
    Liu, Xinglin
    Grant, Philip W.
    PATTERN RECOGNITION LETTERS, 2022, 158 : 117 - 124
  • [8] Block Fuzzy K-modes Clustering Algorithm
    Yang, Miin-Shen
    Lin, Chih-Ying
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 384 - 389
  • [9] CLEKMODES: a modified k-modes clustering algorithm
    Mastrogiannis, N.
    Giannikos, I.
    Boutsinas, B.
    Antzoulatos, G.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (08) : 1085 - 1095
  • [10] Genetic distance measure for K-modes algorithm
    Chiang, Ching-San
    Chu, Shu-Chuan
    Hsin, Yi-Chih
    Wang, Ming-Hui
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2006, 2 (01): : 33 - 40