On the impact of dissimilarity measure in k-modes clustering algorithm

被引:137
|
作者
Ng, Michael K. [1 ]
Li, Mark Junjie
Huang, Joshua Zhexue
He, Zengyou
机构
[1] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, E Business Technol Inst, Hong Kong, Hong Kong, Peoples R China
[3] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
data mining; clustering; k-modes algorithm; categorical data;
D O I
10.1109/TPAMI.2007.53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes extensions to the k-modes algorithm for clustering categorical data. By modifying a simple matching dissimilarity measure for categorical objects, a heuristic approach was developed in [4], [12] which allows the use of the k- modes paradigm to obtain a cluster with strong intrasimilarity and to efficiently cluster large categorical data sets. The main aim of this paper is to rigorously derive the updating formula of the k- modes clustering algorithm with the new dissimilarity measure and the convergence of the algorithm under the optimization framework.
引用
收藏
页码:503 / 507
页数:5
相关论文
共 50 条
  • [21] A weighting k-modes algorithm for subspace clustering of categorical data
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Zhao, Xingwang
    NEUROCOMPUTING, 2013, 108 : 23 - 30
  • [22] A genetic fuzzy k-Modes algorithm for clustering categorical data
    Gan, G.
    Wu, J.
    Yang, Z.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1615 - 1620
  • [23] Computation of Initial Modes for K-modes Clustering Algorithm using Evidence Accumulation
    Khan, Shehroz S.
    Kant, Shri
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2784 - 2789
  • [24] The Impact of Cluster Representatives on the Convergence of the K-Modes Type Clustering
    Bai, Liang
    Liang, Jiye
    Dang, Chuangyin
    Cao, Fuyuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) : 1509 - 1522
  • [25] Approximation algorithms for K-modes clustering
    He, Zengyou
    Deng, Shengchun
    Xu, Xiaofei
    COMPUTATIONAL INTELLIGENCE, PT 2, PROCEEDINGS, 2006, 4114 : 296 - 302
  • [26] Research on Seafood Traceable Data Based on k-Modes Clustering Algorithm
    Ge, Li
    Li, Jiajun
    Chen, Jun
    JOURNAL OF COASTAL RESEARCH, 2020, : 73 - 77
  • [27] Software cost estimation based on modified K-Modes clustering Algorithm
    Bishnu, Partha Sarathi
    Bhattacherjee, Vandana
    NATURAL COMPUTING, 2016, 15 (03) : 415 - 422
  • [28] Software cost estimation based on modified K-Modes clustering Algorithm
    Partha Sarathi Bishnu
    Vandana Bhattacherjee
    Natural Computing, 2016, 15 : 415 - 422
  • [29] Application of metaheuristic based fuzzy K-modes algorithm to supplier clustering
    Kuo, R. J.
    Potti, Yuliana
    Zulvia, Ferani E.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 120 : 298 - 307
  • [30] Attribute weights-based clustering centres algorithm for initialising K-modes clustering
    Liwen Peng
    Yongguo Liu
    Cluster Computing, 2019, 22 : 6171 - 6179