On the impact of dissimilarity measure in k-modes clustering algorithm

被引:137
|
作者
Ng, Michael K. [1 ]
Li, Mark Junjie
Huang, Joshua Zhexue
He, Zengyou
机构
[1] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, E Business Technol Inst, Hong Kong, Hong Kong, Peoples R China
[3] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
data mining; clustering; k-modes algorithm; categorical data;
D O I
10.1109/TPAMI.2007.53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes extensions to the k-modes algorithm for clustering categorical data. By modifying a simple matching dissimilarity measure for categorical objects, a heuristic approach was developed in [4], [12] which allows the use of the k- modes paradigm to obtain a cluster with strong intrasimilarity and to efficiently cluster large categorical data sets. The main aim of this paper is to rigorously derive the updating formula of the k- modes clustering algorithm with the new dissimilarity measure and the convergence of the algorithm under the optimization framework.
引用
收藏
页码:503 / 507
页数:5
相关论文
共 50 条
  • [31] Attribute weights-based clustering centres algorithm for initialising K-modes clustering
    Peng, Liwen
    Liu, Yongguo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S6171 - S6179
  • [32] Multivariate fuzzy k-modes algorithm
    Maciel, Diego B. M.
    Amaral, Getulio J. A.
    de Souza, Renata M. C. R.
    Pimentel, Bruno A.
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (01) : 59 - 71
  • [33] A load clustering algorithm based on discrete wavelet transform and fuzzy K-modes
    Zhang J.
    Zhang Y.
    Hong J.
    Gao H.
    Liu J.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2019, 39 (02): : 100 - 106and122
  • [34] Attribute value weighting in k-modes clustering
    He, Zengyou
    Xu, Xiaofei
    Deng, Shengchun
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15365 - 15369
  • [35] Initialization of K-Modes Clustering for Categorical Data
    Li Tao-ying
    Chen Yan
    Jin Zhi-hong
    Li Ye
    2013 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (ICMSE), 2013, : 107 - 112
  • [36] Multivariate fuzzy k-modes algorithm
    Diêgo B. M. Maciel
    Getulio J. A. Amaral
    Renata M. C. R. de Souza
    Bruno A. Pimentel
    Pattern Analysis and Applications, 2017, 20 : 59 - 71
  • [37] A New Possibilistic Clustering Method: The Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    AI(STAR)IA 2011: ARTIFICIAL INTELLIGENCE AROUND MAN AND BEYOND, 2011, 6934 : 413 - 419
  • [38] Privacy-preserving mechanisms for k-modes clustering
    Huu Hiep Nguyen
    COMPUTERS & SECURITY, 2018, 78 : 60 - 75
  • [39] The Expansion of Initial Point Algorithm for K-Modes Algorithm
    Juliandri
    Zarlis, M.
    Situmorang, Z.
    INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICONICT), 2017, 930
  • [40] Clustering categorical data: Soft rounding k-modes
    Gavva, Surya Teja
    Karthik, C. S.
    Punna, Sharath
    INFORMATION AND COMPUTATION, 2024, 296