Multivariate fuzzy k-modes algorithm

被引:2
|
作者
Maciel, Diego B. M. [1 ]
Amaral, Getulio J. A. [2 ]
de Souza, Renata M. C. R. [3 ]
Pimentel, Bruno A. [4 ]
机构
[1] Univ Fed Amazonas UFAM, Fac Estudos Sociais, Av Gen Rodrigo Octavio Jordao Ramos 3000, BR-69077000 Manaus, AM, Brazil
[2] Univ Fed Pernambuco, Dept Estat, CCEN, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, Av Prof Luiz Freire S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
[4] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N Cidade Univ, BR-50740540 Recife, PE, Brazil
关键词
Fuzzy clustering; Unsupervised pattern recognition; Multivariate membership degrees; Categorical data; C-MEANS;
D O I
10.1007/s10044-015-0465-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fuzzy k-modes clustering, there is just one membership degree of interest by class for each individual which cannot be sufficient to model ambiguity of data precisely. It is known that the essence of a multivariate thinking allows to expose the inherent structure and meaning revealed within a set of variables classified. In this paper, a multivariate approach for membership degrees is presented to better handle ambiguous data that share properties of different clusters. This method is compared with other fuzzy k-modes methods of the literature based on a multivariate internal index that is also proposed in this paper. Synthetic and real categorical data sets are considered in this study.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [1] Multivariate fuzzy k-modes algorithm
    Diêgo B. M. Maciel
    Getulio J. A. Amaral
    Renata M. C. R. de Souza
    Bruno A. Pimentel
    [J]. Pattern Analysis and Applications, 2017, 20 : 59 - 71
  • [2] Block Fuzzy K-modes Clustering Algorithm
    Yang, Miin-Shen
    Lin, Chih-Ying
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 384 - 389
  • [3] A fuzzy k-modes algorithm for clustering categorical data
    Huang, ZX
    Ng, MK
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (04) : 446 - 452
  • [4] A Bio Inspired Fuzzy K-Modes Clustring Algorithm
    Soliman, Omar S.
    Saleh, Doaa A.
    Rashwan, Samaa
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 663 - 669
  • [5] A genetic fuzzy k-Modes algorithm for clustering categorical data
    Gan, G.
    Wu, J.
    Yang, Z.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1615 - 1620
  • [6] Genetic intuitionistic weighted fuzzy k-modes algorithm for categorical data
    Kuo, R. J.
    Thi Phuong Quyen Nguyen
    [J]. NEUROCOMPUTING, 2019, 330 : 116 - 126
  • [7] DP- k-modes: A self-tuning k-modes clustering algorithm
    Xie, Juanying
    Wang, Mingzhao
    Lu, Xiaoxiao
    Liu, Xinglin
    Grant, Philip W.
    [J]. PATTERN RECOGNITION LETTERS, 2022, 158 : 117 - 124
  • [8] Application of metaheuristic based fuzzy K-modes algorithm to supplier clustering
    Kuo, R. J.
    Potti, Yuliana
    Zulvia, Ferani E.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 120 : 298 - 307
  • [9] A load clustering algorithm based on discrete wavelet transform and fuzzy K-modes
    Zhang, Jianglin
    Zhang, Yachao
    Hong, Juhua
    Gao, Hongjun
    Liu, Junyong
    [J]. Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2019, 39 (02): : 100 - 106
  • [10] A dissimilarity measure for the k-Modes clustering algorithm
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Bai, Liang
    Dang, Chuangyin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 26 : 120 - 127