Incremental Rough Possibilistic K-Modes

被引:0
|
作者
Ammar, Asma [1 ]
Elouedi, Zied [1 ]
Lingras, Pawan [2 ]
机构
[1] Univ Tunis, LARODEC, Inst Super Gest Tunis, 41 Ave Liberte, Le Bardo 2000, Tunisia
[2] St Marys Univ, Dept Math & Comp Sci, Halifax, NS B3H 3C3, Canada
关键词
Incremental clustering; possibility theory; rough set theory; k-modes method; possibilistic membership; possibility degree;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel version of the k-modes method dealing with the incremental clustering under uncertain framework. The proposal is called the incremental rough possibilistic k-modes (I-RPKM). First, possibility theory is used to handle uncertain values of attributes in databases and, to compute the membership values of objects to resulting clusters. After that, rough set theory is applied to detect boundary regions. After getting the final partition, the I-RPKM adapts the incremental clustering strategy to take into account new information and update the cluster number without re-clustering objects. I-RPKM is shown to perform better than other certain and uncertain approaches.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 50 条
  • [1] Incremental Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2013, 8170 : 293 - 303
  • [2] Decremental Rough Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. ADAPTIVE AND INTELLIGENT SYSTEMS, ICAIS 2014, 2014, 8779 : 50 - 59
  • [3] Selection of Initial Modes for Rough Possibilistic K-Modes Methods
    Ammar, Asma
    Elouedi, Zied
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2017, 2017, 10352 : 77 - 86
  • [4] Decremental Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. TWELFTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2013), 2013, 257 : 15 - 24
  • [5] A New Possibilistic Clustering Method: The Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    [J]. AI(STAR)IA 2011: ARTIFICIAL INTELLIGENCE AROUND MAN AND BEYOND, 2011, 6934 : 413 - 419
  • [6] A NOVEL APPROACH FOR THE SELECTION OF INITIAL MODES FOR THE POSSIBILISTIC K-MODES
    Ammar, A.
    Elouedi, Z.
    [J]. UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 119 - 124
  • [7] Semantically Enhanced Clustering in Retail Using Possibilistic K-Modes
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 753 - 764
  • [8] Rough Set Based Fuzzy K-Modes for Categorical Data
    Saha, Indrajit
    Sarkar, Jnanendra Prasad
    Maulik, Ujjwal
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 323 - 330
  • [9] The K-Modes Method using Possibility and Rough Set Theories
    Ammar, Asma
    Elouedi, Zied
    Lingras, Pawan
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1297 - 1302
  • [10] Metaheuristic-based possibilistic fuzzy k-modes algorithms for categorical data clustering
    Kuo, R. J.
    Zheng, Y. R.
    Thi Phuong Quyen Nguyen
    [J]. INFORMATION SCIENCES, 2021, 557 : 1 - 15