Artificial Intelligence and Cardiovascular Magnetic Resonance Imaging in Myocardial Infarction Patients

被引:5
|
作者
Chong, Jun Hua [1 ,2 ]
Abdulkareem, Musa [3 ,4 ,5 ]
Petersen, Steffen E. [3 ,4 ,5 ,6 ]
Khanji, Mohammed Y. [3 ,4 ,7 ]
机构
[1] Natl Heart Ctr Singapore, Singapore, Singapore
[2] Duke Natl Univ Singapore Med Sch, Cardiovasc Sci Acad Clin Programme, Singapore, Singapore
[3] Barts Hlth Natl Hlth Serv Trust, Barts Heart Ctr, London, England
[4] Queen Mary Univ London, William Harvey Res Inst, Barts Biomed Res Ctr, Natl Inst Hlth Res, London, England
[5] Hlth Data Res UK, London, England
[6] Alan Turing Inst, London, England
[7] Barts Hlth NHS Trust, Newham Univ Hosp, Dept Cardiol, London, England
基金
英国科研创新办公室;
关键词
ST-SEGMENT-ELEVATION; LATE GADOLINIUM ENHANCEMENT; TEXTURE ANALYSIS; MICROVASCULAR OBSTRUCTION; COMPONENT ANALYSIS; SIZE; CMR; RADIOMICS; PERFUSION; RECOVERY;
D O I
10.1016/j.cpcardiol.2022.101330
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular magnetic resonance (CMR) is an important cardiac imaging tool for assessing the prognostic extent of myocardial injury after myocardial infarction (MI). Within the context of clinical trials, CMR is also useful for assessing the efficacy of potential cardioprotective therapies in reducing MI size and preventing adverse left ventricular (LV) remodelling in reperfused MI. However, manual contouring and analysis can be time-consuming with interobserver and intra-observer variability, which can in turn lead to reduction in accuracy and precision of analysis. There is thus a need to automate CMR scan analysis in MI patients to save time, increase accuracy, increase reproducibility and increase precision. In this regard, automated imaging analysis techniques based on artificial intelligence (AI) that are developed with machine learning (ML), and more specifically deep learning (DL) strategies, can enable efficient, robust, accurate and clinician-friendly tools to be built so as to try and improve both clinician productivity and quality of patient care. In this review, we discuss basic concepts of ML in CMR, important prognostic CMR imaging biomarkers in MI and the utility of current ML applications in their analysis as assessed in research studies. We highlight potential barriers to the mainstream implementation of these automated strategies and discuss related governance and quality control issues. Lastly, we discuss the future role of ML applications in clinical trials and the need for global collaboration in growing this field.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Cardiovascular magnetic resonance imaging of myocardial inflammation
    Wassmuth, Ralf
    Schulz-Menger, Jeanette
    EXPERT REVIEW OF CARDIOVASCULAR THERAPY, 2011, 9 (09) : 1193 - 1201
  • [22] Myocardial infarction after coronary revascularization: role of cardiovascular magnetic resonance oedema imaging
    Abdel-Aty, H
    Schulz-Menger, J
    EUROPEAN HEART JOURNAL, 2004, 25 (23) : 2172 - 2172
  • [23] Cardiovascular magnetic resonance imaging as a gold standard for diagnosis of true aborted myocardial infarction
    Ingo Eitel
    Georg Fuernau
    Josef Friedenberger
    Mahdi Sareban
    Gerhard Schuler
    Matthias Gutberlet
    Holger Thiele
    Journal of Cardiovascular Magnetic Resonance, 11 (Suppl 1)
  • [24] The use of cardiovascular magnetic resonance in acute myocardial infarction
    Abdel-Aty H.
    Tillmanns C.
    Current Cardiology Reports, 2010, 12 (1) : 76 - 81
  • [25] Timing of cardiovascular magnetic resonance imaging and diagnostic yield in patients with acute myocardial infarction with nonobstructive coronary arteries
    Junca Puig, G.
    Teis Soley, A.
    Kasa Yaglici, G.
    Ferrer Sistach, E.
    Lopez Ayerbe, J.
    Vallejo Camazon, N.
    Gual Capllonch, F.
    Bayes Genis, A.
    Delgado Garcia, V.
    EUROPEAN HEART JOURNAL, 2022, 43 : 1454 - 1454
  • [26] Artificial intelligence to analyze magnetic resonance imaging in rheumatology
    Adams, Lisa C.
    Bressem, Keno K.
    Ziegeler, Katharina
    Vahldiek, Janis L.
    Poddubnyy, Denis
    JOINT BONE SPINE, 2024, 91 (03)
  • [27] Artificial Intelligence in Magnetic Resonance Imaging: A Feasible Practice?
    Solomou, Aikaterini
    Apostolos, Anastasios
    Ntoulias, Nikolaos
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2020, 51 (03) : 501 - 502
  • [28] Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis
    Lee, Seulkee
    Jeon, Uju
    Lee, Ji Hyun
    Kang, Seonyoung
    Kim, Hyungjin
    Lee, Jaejoon
    Chung, Myung Jin
    Cha, Hoon-Suk
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [29] Artificial intelligence in multiparametric magnetic resonance imaging: A review
    Li, Cheng
    Li, Wen
    Liu, Chenyang
    Zheng, Hairong
    Cai, Jing
    Wang, Shanshan
    MEDICAL PHYSICS, 2022, 49 (10) : E1024 - E1054
  • [30] Artificial Intelligence for the Detection of Sacroiliitis on Magnetic Resonance Imaging in Patients with Axial Spondyloarthritis
    Lee, Seulkee
    Jeon, Uju
    Lee, Ji Hyun
    Kang, Seonyoung
    Kim, Hyungjin
    Lee, Jaejoon
    Chung, Myung Jin
    Kim, Jinseok
    Koh, Eun-Mi
    Cha, Hoon-Suk
    ARTHRITIS & RHEUMATOLOGY, 2023, 75 : 3721 - 3723